Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sholom Wacholder is active.

Publication


Featured researches published by Sholom Wacholder.


The New England Journal of Medicine | 1997

The risk of cancer associated with specific mutations of BRCA1 and BRCA2 among Ashkenazi Jews

Jeffery P. Struewing; Patricia Hartge; Sholom Wacholder; Sonya M. Baker; Martha Berlin; Mary McAdams; Michelle M. Timmerman; Lawrence C. Brody; Margaret A. Tucker

BACKGROUND Carriers of germ-line mutations in BRCA1 and BRCA2 from families at high risk for cancer have been estimated to have an 85 percent risk of breast cancer. Since the combined frequency of BRCA1 and BRCA2 mutations exceeds 2 percent among Ashkenazi Jews, we were able to estimate the risk of cancer in a large group of Jewish men and women from the Washington, D.C., area. METHODS We collected blood samples from 5318 Jewish subjects who had filled out epidemiologic questionnaires. Carriers of the 185delAG and 5382insC mutations in BRCA1 and the 6174delT mutation in BRCA2 were identified with assays based on the polymerase chain reaction. We estimated the risks of breast and other cancers by comparing the cancer histories of relatives of carriers of the mutations and noncarriers. RESULTS One hundred twenty carriers of a BRCA1 or BRCA2 mutation were identified. By the age of 70, the estimated risk of breast cancer among carriers was 56 percent (95 percent confidence interval, 40 to 73 percent); of ovarian cancer, 16 percent (95 percent confidence interval, 6 to 28 percent); and of prostate cancer, 16 percent (95 percent confidence interval, 4 to 30 percent). There were no significant differences in the risk of breast cancer between carriers of BRCA1 mutations and carriers of BRCA2 mutations, and the incidence of colon cancer among the relatives of carriers was not elevated. CONCLUSIONS Over 2 percent of Ashkenazi Jews carry mutations in BRCA1 or BRCA2 that confer increased risks of breast, ovarian, and prostate cancer. The risks of breast cancer may be overestimated, but they fall well below previous estimates based on subjects from high-risk families.


Nature Genetics | 2007

A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer

David J. Hunter; Peter Kraft; Kevin B. Jacobs; David G. Cox; Meredith Yeager; Susan E. Hankinson; Sholom Wacholder; Zhaoming Wang; Robert Welch; Amy Hutchinson; Junwen Wang; Kai Yu; Nilanjan Chatterjee; Nick Orr; Walter C. Willett; Graham A. Colditz; Regina G. Ziegler; Christine D. Berg; Saundra S. Buys; Catherine A. McCarty; Heather Spencer Feigelson; Eugenia E. Calle; Michael J. Thun; Richard B. Hayes; Margaret A. Tucker; Daniela S. Gerhard; Joseph F. Fraumeni; Robert N. Hoover; Gilles Thomas; Stephen J. Chanock

We conducted a genome-wide association study (GWAS) of breast cancer by genotyping 528,173 SNPs in 1,145 postmenopausal women of European ancestry with invasive breast cancer and 1,142 controls. We identified four SNPs in intron 2 of FGFR2 (which encodes a receptor tyrosine kinase and is amplified or overexpressed in some breast cancers) that were highly associated with breast cancer and confirmed this association in 1,776 affected individuals and 2,072 controls from three additional studies. Across the four studies, the association with all four SNPs was highly statistically significant (Ptrend for the most strongly associated SNP (rs1219648) = 1.1 × 10−10; population attributable risk = 16%). Four SNPs at other loci most strongly associated with breast cancer in the initial GWAS were not associated in the replication studies. Our summary results from the GWAS are available online in a form that should speed the identification of additional risk loci.


Nature | 2007

Replicating genotype-phenotype associations.

Stephen J. Chanock; Teri A. Manolio; Michael Boehnke; Eric Boerwinkle; David J. Hunter; Gilles Thomas; Joel N. Hirschhorn; Gonçalo R. Abecasis; David Altshuler; Joan E. Bailey-Wilson; Lisa D. Brooks; Lon R. Cardon; Mark J. Daly; Peter Donnelly; Joseph F. Fraumeni; Nelson B. Freimer; Daniela S. Gerhard; Chris Gunter; Alan E. Guttmacher; Mark S. Guyer; Emily L. Harris; Josephine Hoh; Robert N. Hoover; C. Augustine Kong; Kathleen R. Merikangas; Cynthia C. Morton; Lyle J. Palmer; Elizabeth G. Phimister; John P. Rice; Jerry Roberts

What constitutes replication of a genotype–phenotype association, and how best can it be achieved?


Nature Genetics | 2007

Genome-wide association study of prostate cancer identifies a second risk locus at 8q24.

Meredith Yeager; Nick Orr; Richard B. Hayes; Kevin B. Jacobs; Peter Kraft; Sholom Wacholder; Mark J Minichiello; Paul Fearnhead; Kai Yu; Nilanjan Chatterjee; Zhaoming Wang; Robert Welch; Brian Staats; Eugenia E. Calle; Heather Spencer Feigelson; Michael J. Thun; Carmen Rodriguez; Demetrius Albanes; Jarmo Virtamo; Stephanie J. Weinstein; Fredrick R. Schumacher; Edward Giovannucci; Walter C. Willett; Geraldine Cancel-Tassin; Olivier Cussenot; Antoine Valeri; Gerald L. Andriole; Edward P. Gelmann; Margaret A. Tucker; Daniela S. Gerhard

Recently, common variants on human chromosome 8q24 were found to be associated with prostate cancer risk. While conducting a genome-wide association study in the Cancer Genetic Markers of Susceptibility project with 550,000 SNPs in a nested case-control study (1,172 cases and 1,157 controls of European origin), we identified a new association at 8q24 with an independent effect on prostate cancer susceptibility. The most significant signal is 70 kb centromeric to the previously reported SNP, rs1447295, but shows little evidence of linkage disequilibrium with it. A combined analysis with four additional studies (total: 4,296 cases and 4,299 controls) confirms association with prostate cancer for rs6983267 in the centromeric locus (P = 9.42 × 10−13; heterozygote odds ratio (OR): 1.26, 95% confidence interval (c.i.): 1.13–1.41; homozygote OR: 1.58, 95% c.i.: 1.40–1.78). Each SNP remained significant in a joint analysis after adjusting for the other (rs1447295 P = 1.41 × 10−11; rs6983267 P = 6.62 × 10−10). These observations, combined with compelling evidence for a recombination hotspot between the two markers, indicate the presence of at least two independent loci within 8q24 that contribute to prostate cancer in men of European ancestry. We estimate that the population attributable risk of the new locus, marked by rs6983267, is higher than the locus marked by rs1447295 (21% versus 9%).


Nature Genetics | 2008

Multiple loci identified in a genome-wide association study of prostate cancer

Gilles Thomas; Kevin B. Jacobs; Meredith Yeager; Peter Kraft; Sholom Wacholder; Nick Orr; Kai Yu; Nilanjan Chatterjee; Robert Welch; Amy Hutchinson; Andrew Crenshaw; Geraldine Cancel-Tassin; Brian Staats; Zhaoming Wang; Jesus Gonzalez-Bosquet; Jun Fang; Xiang Deng; Sonja I. Berndt; Eugenia E. Calle; Heather Spencer Feigelson; Michael J. Thun; Carmen Rodriguez; Demetrius Albanes; Jarmo Virtamo; Stephanie J. Weinstein; Fredrick R. Schumacher; Edward Giovannucci; Walter C. Willett; Olivier Cussenot; Antoine Valeri

We followed our initial genome-wide association study (GWAS) of 527,869 SNPs on 1,172 individuals with prostate cancer and 1,157 controls of European origin—nested in the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial prospective study—by testing 26,958 SNPs in four independent studies (total of 3,941 cases and 3,964 controls). In the combined joint analysis, we confirmed three previously reported loci (two independent SNPs at 8q24 and one in HNF1B (formerly known as TCF2 on 17q); P < 10−10). In addition, loci on chromosomes 7, 10 (two loci) and 11 were highly significant (between P < 7.31 × 10−13 and P < 2.14 × 10−6). Loci on chromosome 10 include MSMB, which encodes β-microseminoprotein, a primary constituent of semen and a proposed prostate cancer biomarker, and CTBP2, a gene with antiapoptotic activity; the locus on chromosome 7 is at JAZF1, a transcriptional repressor that is fused by chromosome translocation to SUZ12 in endometrial cancer. Of the nine loci that showed highly suggestive associations (P < 2.5 × 10−5), four best fit a recessive model and included candidate susceptibility genes: CPNE3, IL16 and CDH13. Our findings point to multiple loci with moderate effects associated with susceptibility to prostate cancer that, taken together, in the future may predict high risk in select individuals.


The New England Journal of Medicine | 1984

The relation of risk factors to the development of atherosclerosis in saphenous-vein bypass grafts and the progression of disease in the native circulation: a study 10 years after aortocoronary bypass surgery

Lucien Campeau; Marc Enjalbert; Jacques Lespérance; Martial G. Bourassa; Peter O. Kwiterovich; Sholom Wacholder; Allan D. Sniderman

We examined 82 patients 10 years after saphenous-vein aortocoronary bypass surgery to determine their angiographic status and to relate those findings to the risk factors for coronary-artery disease. Of 132 grafts shown to be patent 1 year after surgery, only 50 were unaffected at 10 years. The remainder were narrowed (43) or occluded (39). Disease progression in coronary arteries without grafts was also frequent, both in vessels that were normal (15 of 32) and in those with minor stenosis (25 of 53). New lesions did not develop in 15 patients, whereas they did in 67--in the grafts, the native vessels, or both. There was no significant difference between the two groups in the incidence of hypertension, diabetes, or smoking, whereas plasma levels of very-low-density lipoproteins (VLDLs) and low-density lipoproteins (LDLs) were higher, and high-density lipoprotein (HDL) levels were lower in those with new disease than in those without. Univariate analysis showed that plasma cholesterol and triglyceride levels were significantly higher at the time of surgery and at the 10-year examination in those with new lesions. Multivariate analysis indicated that among the lipoprotein indexes, levels of HDL cholesterol and plasma LDL apoprotein B best distinguished the two groups. The findings indicate that atherosclerosis in these patients was a progressive disease, frequently affecting both the grafts and the native vessels, and that the course of such disease may be related to the plasma lipoprotein levels.


The Lancet | 2005

NAT2 slow acetylation, GSTM1 null genotype, and risk of bladder cancer: results from the Spanish Bladder Cancer Study and meta-analyses

Montserrat Garcia-Closas; Núria Malats; Debra T. Silverman; Mustafa Dosemeci; Manolis Kogevinas; David W. Hein; Adonina Tardón; Consol Serra; Alfredo Carrato; Reina García-Closas; Josep Lloreta; Gemma Castaño-Vinyals; Meredith Yeager; Robert Welch; Stephen J. Chanock; Nilanjan Chatterjee; Sholom Wacholder; Claudine Samanic; Montserrat Torà; Francisco Fernandez; Francisco X. Real; Nathaniel Rothman

BACKGROUND Many reported associations between common genetic polymorphisms and complex diseases have not been confirmed in subsequent studies. An exception could be the association between NAT2 slow acetylation, GSTM1 null genotype, and bladder-cancer risk. However, current evidence is based on meta-analyses of relatively small studies (range 23-374 cases) with some evidence of publication bias and study heterogeneity. Associations between polymorphisms in other NAT and GST genes and bladder-cancer risk have been inconsistent. METHODS We investigated polymorphisms in NAT2, GSTM1, NAT1, GSTT1, GSTM3, and GSTP1 in 1150 patients with transitional-cell carcinoma of the urinary bladder and 1149 controls in Spain; all the participants were white. We also carried out meta-analyses of NAT2, GSTM1, and bladder cancer that included more than twice as many cases as in previous reports. FINDINGS In our study, the odds ratios for bladder cancer for individuals with deletion of one or two copies of the GSTM1 gene were 1.2 (95% CI 0.8-1.7) and 1.9 (1.4-2.7) respectively (p for trend <0.0001). Compared with NAT2 rapid or intermediate acetylators, NAT2 slow acetylators had an increased overall risk of bladder cancer (1.4 [1.2-1.7]) that was stronger for cigarette smokers than for never smokers (p for interaction 0.008). No significant associations were found with the other polymorphisms. Meta-analyses showed that the overall association for NAT2 was robust (p<0.0001), and case-only meta-analyses provided support for an interaction between NAT2 and smoking (p for interaction 0.009). The overall association for GSTM1 was also robust (p<0.0001) and was not modified by smoking status (p=0.86). INTERPRETATION The GSTM1 null genotype increases the overall risk of bladder cancer, and the NAT2 slow-acetylator genotype increases risk particularly among cigarette smokers. These findings provide compelling evidence for the role of common polymorphisms in the aetiology of cancer. RELEVANCE TO PRACTICE Although the relative risks are modest, these polymorphisms could account for up to 31% of bladder cancers because of their high prevalence.


Nature Genetics | 2009

A multistage genome-wide association study in breast cancer identifies two new risk alleles at 1p11.2 and 14q24.1 (RAD51L1).

Gilles Thomas; Kevin B. Jacobs; Peter Kraft; Meredith Yeager; Sholom Wacholder; David G. Cox; Susan E. Hankinson; Amy Hutchinson; Zhaoming Wang; Kai Yu; Nilanjan Chatterjee; Montserrat Garcia-Closas; Jesus Gonzalez-Bosquet; Ludmila Prokunina-Olsson; Nick Orr; Walter C. Willett; Graham A. Colditz; Regina G. Ziegler; Christine D. Berg; Saundra S. Buys; Catherine A. McCarty; Heather Spencer Feigelson; Eugenia E. Calle; Michael J. Thun; Ryan Diver; Ross L. Prentice; Rebecca D. Jackson; Charles Kooperberg; Rowan T. Chlebowski; Jolanta Lissowska

We conducted a three-stage genome-wide association study (GWAS) of breast cancer in 9,770 cases and 10,799 controls in the Cancer Genetic Markers of Susceptibility (CGEMS) initiative. In stage 1, we genotyped 528,173 SNPs in 1,145 cases of invasive breast cancer and 1,142 controls. In stage 2, we analyzed 24,909 top SNPs in 4,547 cases and 4,434 controls. In stage 3, we investigated 21 loci in 4,078 cases and 5,223 controls. Two new loci achieved genome-wide significance. A pericentromeric SNP on chromosome 1p11.2 (rs11249433; P = 6.74 × 10−10 adjusted genotype test, 2 degrees of freedom) resides in a large linkage disequilibrium block neighboring NOTCH2 and FCGR1B; this signal was stronger for estrogen-receptor–positive tumors. A second SNP on chromosome 14q24.1 (rs999737; P = 1.74 × 10−7) localizes to RAD51L1, a gene in the homologous recombination DNA repair pathway. We also confirmed associations with loci on chromosomes 2q35, 5p12, 5q11.2, 8q24, 10q26 and 16q12.1.


Nature Genetics | 2010

Estimation of effect size distribution from genome-wide association studies and implications for future discoveries

Ju Hyun Park; Sholom Wacholder; Mitchell H. Gail; Ulrike Peters; Kevin B. Jacobs; Stephen J. Chanock; Nilanjan Chatterjee

We report a set of tools to estimate the number of susceptibility loci and the distribution of their effect sizes for a trait on the basis of discoveries from existing genome-wide association studies (GWASs). We propose statistical power calculations for future GWASs using estimated distributions of effect sizes. Using reported GWAS findings for height, Crohns disease and breast, prostate and colorectal (BPC) cancers, we determine that each of these traits is likely to harbor additional loci within the spectrum of low-penetrance common variants. These loci, which can be identified from sufficiently powerful GWASs, together could explain at least 15–20% of the known heritability of these traits. However, for BPC cancers, which have modest familial aggregation, our analysis suggests that risk models based on common variants alone will have modest discriminatory power (63.5% area under curve), even with new discoveries.


American Journal of Human Genetics | 2009

A Genome-wide Association Study of Lung Cancer Identifies a Region of Chromosome 5p15 Associated with Risk for Adenocarcinoma

Maria Teresa Landi; Nilanjan Chatterjee; Kai Yu; Lynn R. Goldin; Alisa M. Goldstein; Melissa Rotunno; Lisa Mirabello; Kevin B. Jacobs; William Wheeler; Meredith Yeager; Andrew W. Bergen; Qizhai Li; Dario Consonni; Angela Cecilia Pesatori; Sholom Wacholder; Michael J. Thun; Ryan Diver; Martin M. Oken; Jarmo Virtamo; Demetrius Albanes; Zhaoming Wang; Laurie Burdette; Kimberly F. Doheny; Elizabeth W. Pugh; Cathy C. Laurie; Paul Brennan; Rayjean J. Hung; Valerie Gaborieau; James D. McKay; Mark Lathrop

Three genetic loci for lung cancer risk have been identified by genome-wide association studies (GWAS), but inherited susceptibility to specific histologic types of lung cancer is not well established. We conducted a GWAS of lung cancer and its major histologic types, genotyping 515,922 single-nucleotide polymorphisms (SNPs) in 5739 lung cancer cases and 5848 controls from one population-based case-control study and three cohort studies. Results were combined with summary data from ten additional studies, for a total of 13,300 cases and 19,666 controls of European descent. Four studies also provided histology data for replication, resulting in 3333 adenocarcinomas (AD), 2589 squamous cell carcinomas (SQ), and 1418 small cell carcinomas (SC). In analyses by histology, rs2736100 (TERT), on chromosome 5p15.33, was associated with risk of adenocarcinoma (odds ratio [OR]=1.23, 95% confidence interval [CI]=1.13-1.33, p=3.02x10(-7)), but not with other histologic types (OR=1.01, p=0.84 and OR=1.00, p=0.93 for SQ and SC, respectively). This finding was confirmed in each replication study and overall meta-analysis (OR=1.24, 95% CI=1.17-1.31, p=3.74x10(-14) for AD; OR=0.99, p=0.69 and OR=0.97, p=0.48 for SQ and SC, respectively). Other previously reported association signals on 15q25 and 6p21 were also refined, but no additional loci reached genome-wide significance. In conclusion, a lung cancer GWAS identified a distinct hereditary contribution to adenocarcinoma.

Collaboration


Dive into the Sholom Wacholder's collaboration.

Top Co-Authors

Avatar

Mark Schiffman

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Allan Hildesheim

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Rolando Herrero

International Agency for Research on Cancer

View shared research outputs
Top Co-Authors

Avatar

Ana Cecilia Rodriguez

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert D. Burk

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Philip E. Castle

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Carolina Porras

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Margaret A. Tucker

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Neil E. Caporaso

United States Department of Health and Human Services

View shared research outputs
Researchain Logo
Decentralizing Knowledge