Shomyseh Sanjabi
University of California, San Francisco
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shomyseh Sanjabi.
Nature Immunology | 2001
Amy S. Weinmann; Deborah M. Mitchell; Shomyseh Sanjabi; Michelle N. Bradley; Alexander Hoffmann; Hsiou Chi Liou; Stephen T. Smale
Lipopolysaccharide (LPS) induction of the gene encoding interleukin 12 p40 requires remodeling of a promoter-encompassing nucleosome and the Toll-like receptor (TLR)–mediated activation of a c-Rel–containing complex. Analysis of TLR4-mutant mice revealed that remodeling requires TLR signaling. However, Rel proteins and other proteins required for transcription of an integrated p40 promoter were insufficient for remodeling. c-Rel was also unnecessary for remodeling, as remodeling was observed in c-Rel−/− macrophages, which lack p40 transcripts. These results suggest that remodeling requires TLR signaling pathways that diverge from the c-Rel activation pathways. The factors that stimulate remodeling may represent, therefore, newly identified targets of TLR signaling and of agents that regulate inflammatory responses and TH1 development.
Current Opinion in Pharmacology | 2009
Shomyseh Sanjabi; Lauren A. Zenewicz; Masahito Kamanaka; Richard A. Flavell
Cytokines play a major role in maintaining lymphocyte homeostasis under both steady-state and inflammatory conditions. Unregulated lymphocytes in steady-state conditions can lead to autoimmunity, whereas during inflammation they can cause excessive tissue damage. Regulatory cytokines function in combination with other environmental signals to properly modulate the function and the extent of lymphocyte activation. Many recent studies have highlighted the importance of regulatory cytokines in controlling the differentiation and function of lymphocytes under steady-state and inflammatory conditions, as well as minimizing tissue damage.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Harumichi Ishigame; Lauren A. Zenewicz; Shomyseh Sanjabi; Paula Licona-Limón; Maki Nakayama; Warren J. Leonard; Richard A. Flavell
TGF-β signaling in T cells is critical for peripheral T-cell tolerance by regulating effector CD4+ T helper (Th) cell differentiation. However, it is still controversial to what extent TGF-β signaling in Foxp3+ regulatory T (Treg) cells contributes to immune homeostasis. Here we showed that abrogation of TGF-β signaling in thymic T cells led to rapid type 1 diabetes (T1D) development in NOD mice transgenic for the BDC2.5 T-cell receptor. Disease development in these mice was associated with increased peripheral Th1 cells, whereas Th17 cells and Foxp3+ Treg cells were reduced. Blocking of IFN-γ signaling alone completely suppressed diabetes development in these mice, indicating a critical role of Th1 cells in this model. Furthermore, deletion of TGF-β signaling in peripheral effector CD4+ T cells, but not Treg cells, also resulted in rapid T1D development, suggesting that conventional CD4+ T cells are the main targets of TGF-β to suppress T1D. TGF-β signaling was dispensable for Treg cell function, development, and maintenance, but excessive IFN-γ production due to the absence of TGF-β signaling in naive CD4+ T cells indirectly caused dysregulated Treg cell homeostasis. We further showed that T cell–derived TGF-β1 was critical for suppression of Th1 cell differentiation and T1D development. These results indicate that autocrine/paracrine TGF-β signaling in diabetogenic CD4+ T cells, but not Treg cells, is essential for controlling T1D development.
Cold Spring Harbor Perspectives in Biology | 2017
Shomyseh Sanjabi; Soyoung A. Oh; Ming O. Li
Transforming growth factor β (TGF-β) is a pleiotropic cytokine involved in both suppressive and inflammatory immune responses. After 30 years of intense study, we have only begun to elucidate how TGF-β alters immunity under various conditions. Under steady-state conditions, TGF-β regulates thymic T-cell selection and maintains homeostasis of the naïve T-cell pool. TGF-β inhibits cytotoxic T lymphocyte (CTL), Th1-, and Th2-cell differentiation while promoting peripheral (p)Treg-, Th17-, Th9-, and Tfh-cell generation, and T-cell tissue residence in response to immune challenges. Similarly, TGF-β controls the proliferation, survival, activation, and differentiation of B cells, as well as the development and functions of innate cells, including natural killer (NK) cells, macrophages, dendritic cells, and granulocytes. Collectively, TGF-β plays a pivotal role in maintaining peripheral tolerance against self- and innocuous antigens, such as food, commensal bacteria, and fetal alloantigens, and in controlling immune responses to pathogens.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Didi Matza; Abdallah Badou; Mithilesh Kumar Jha; Tim Willinger; Andrey Antov; Shomyseh Sanjabi; Koichi S. Kobayashi; Vincent T. Marchesi; Richard A. Flavell
Cytolytic CD8+ T cells (CTLs) kill virally infected cells, tumor cells, or other potentially autoreactive T cells in a calcium-dependent manner. To date, the molecular mechanism that leads to calcium intake during CTL differentiation and function has remained unresolved. We demonstrate that desmoyokin (AHNAK1) is expressed in mature CTLs, but not in naive CD8+ T cells, and is critical for calcium entry required for their proper function during immune response. We show that mature AHNAK1-deficient CTLs exhibit reduced Cav1.1 α1 subunit expression (also referred to as L-type calcium channels or α1S pore-forming subunits), which recently were suggested to play a role in calcium entry into CD4+ T cells. AHNAK1-deficient CTLs show marked reduction in granzyme-B production, cytolytic activity, and IFN-γ secretion after T cell receptor stimulation. Our results demonstrate an AHNAK1-dependent mechanism controlling calcium entry during CTL effector function.
Journal of Immunology | 2013
Harumichi Ishigame; Munir M. Mosaheb; Shomyseh Sanjabi; Richard A. Flavell
Inflammatory and anti-inflammatory cytokines play an important role in the generation of effector and memory CD8+ T cells. We used two different models, transgenic expression of truncated (dominant negative) form of TGF-βRII (dnTGFβRII) and Cre-mediated deletion of the floxed TGF-βRII to examine the role of TGF-β signaling in the formation, function, and homeostatic proliferation of memory CD8+ T cells. Blocking TGF-β signaling in effector CD8+ T cells using both of these models demonstrated a role for TGF-β in regulating the number of short-lived effector cells but did not alter memory CD8+ T cell formation and their function upon Listeria monocytogenes infection in mice. Interestingly, however, a massive lymphoproliferative disorder and cellular transformation were observed in Ag-experienced and homeostatically generated memory CD8+ T cells only in cells that express the dnTGFβRII and not in cells with a complete deletion of TGF-βRII. Furthermore, the development of transformed memory CD8+ T cells expressing dnTGFβRII was IL-7– and IL-15–independent, and MHC class I was not required for their proliferation. We show that transgenic expression of the dnTGFβRII, rather than the absence of TGF-βRII–mediated signaling, is responsible for dysregulated expansion of memory CD8+ T cells. This study uncovers a previously unrecognized dominant function of the dnTGFβRII in CD8+ T cell proliferation and cellular transformation, which is caused by a mechanism that is different from the absence of TGF-β signaling. These results should be considered during both basic and translational studies where there is a desire to block TGF-β signaling in CD8+ T cells.
Journal of Experimental Medicine | 2016
Shahzada Khan; Erik M. Woodruff; Martin Trapecar; Krystal A. Fontaine; Ashley Ezaki; Timothy C. Borbet; Melanie Ott; Shomyseh Sanjabi
Khan et al. demonstrate that the lower female reproductive tract is exceptionally vulnerable to infection by LCMV and Zika virus, as intravaginal exposure to these RNA viral pathogens elicits a dampened antiviral immune response.
Frontiers in Immunology | 2017
Hesham M. Shehata; Andrew J. Murphy; Man Kit Sam Lee; Clair M. Gardiner; Suzanne M. Crowe; Shomyseh Sanjabi; David K. Finlay; Clovis S. Palmer
The realization that an intricate link exists between the metabolic state of immune cells and the nature of the elicited immune responses has brought a dramatic evolution to the field of immunology. We will focus on how metabolic reprogramming through the use of glycolysis and fatty-acid oxidation (sugar or fat) regulates the capacity of immune cells to mount robust and effective immune responses. We will also discuss how fine-tuning sugar and fat metabolism may be exploited as a novel immunotherapeutic strategy to fight viral infections or improve vaccine efficacy.
Current Opinion in Pharmacology | 2009
Shomyseh Sanjabi; Lauren A. Zenewicz; Masahito Kamanaka; Richard A. Flavell
Cytokines play a major role in maintaining lymphocyte homeostasis under both steady-state and inflammatory conditions. Unregulated lymphocytes in steady-state conditions can lead to autoimmunity, whereas during inflammation they can cause excessive tissue damage. Regulatory cytokines function in combination with other environmental signals to properly modulate the function and the extent of lymphocyte activation. Many recent studies have highlighted the importance of regulatory cytokines in controlling the differentiation and function of lymphocytes under steady-state and inflammatory conditions, as well as minimizing tissue damage.
PLOS Pathogens | 2018
Louise E. Hogan; Joshua Vasquez; Kristen S. Hobbs; Emily Hanhauser; Brandon Aguilar-Rodriguez; Rajaa Hussien; Cassandra Thanh; Erica A. Gibson; Alexander Carvidi; Louis C. B. Smith; Shahzada Khan; Martin Trapecar; Shomyseh Sanjabi; Ma Somsouk; Cheryl A. Stoddart; Daniel R. Kuritzkes; Steven G. Deeks; Timothy J. Henrich
HIV-1-infected cells persist indefinitely despite the use of combination antiretroviral therapy (ART), and novel therapeutic strategies to target and purge residual infected cells in individuals on ART are urgently needed. Here, we demonstrate that CD4+ T cell-associated HIV-1 RNA is often highly enriched in cells expressing CD30, and that cells expressing this marker considerably contribute to the total pool of transcriptionally active CD4+ lymphocytes in individuals on suppressive ART. Using in situ RNA hybridization studies, we show co-localization of CD30 with HIV-1 transcriptional activity in gut-associated lymphoid tissues. We also demonstrate that ex vivo treatment with brentuximab vedotin, an antibody-drug conjugate (ADC) that targets CD30, significantly reduces the total amount of HIV-1 DNA in peripheral blood mononuclear cells obtained from infected, ART-suppressed individuals. Finally, we observed that an HIV-1-infected individual, who received repeated brentuximab vedotin infusions for lymphoma, had no detectable virus in peripheral blood mononuclear cells. Overall, CD30 may be a marker of residual, transcriptionally active HIV-1 infected cells in the setting of suppressive ART. Given that CD30 is only expressed on a small number of total mononuclear cells, it is a potential therapeutic target of persistent HIV-1 infection.