Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shon Booker is active.

Publication


Featured researches published by Shon Booker.


Journal of Medicinal Chemistry | 2008

Design, synthesis, and biological evaluation of potent c-Met inhibitors.

Noel D'angelo; Steven Bellon; Shon Booker; Yuan Cheng; Angela Coxon; Celia Dominguez; Ingrid M. Fellows; Douglas Hoffman; Randall W. Hungate; Paula Kaplan-Lefko; Matthew R. Lee; Chun Li; Longbin Liu; Elizabeth Rainbeau; Paul J. Reider; Karen Rex; Aaron C. Siegmund; Yaxiong Sun; Andrew Tasker; Ning Xi; Shimin Xu; Yajing Yang; Yihong Zhang; Teresa L. Burgess; Isabelle Dussault; Tae-Seong Kim

c-Met is a receptor tyrosine kinase that plays a key role in several cellular processes but has also been found to be overexpressed and mutated in different human cancers. Consequently, targeting this enzyme has become an area of intense research in drug discovery. Our studies began with the design and synthesis of novel pyrimidone 7, which was found to be a potent c-Met inhibitor. Subsequent SAR studies identified 22 as a more potent analog, whereas an X-ray crystal structure of 7 bound to c-Met revealed an unexpected binding conformation. This latter finding led to the development of a new series that featured compounds that were more potent both in vitro and in vivo than 22 and also exhibited different binding conformations to c-Met. Novel c-Met inhibitors have been designed, developed, and found to be potent in vitro and in vivo.


Journal of Medicinal Chemistry | 2011

Discovery and Optimization of a Series of Benzothiazole Phosphoinositide 3-Kinase (PI3K)/Mammalian Target of Rapamycin (mTOR) Dual Inhibitors

Noel D. D’Angelo; Tae-Seong Kim; Kristin L. Andrews; Shon Booker; Sean Caenepeel; Kui Chen; Derin C. D’Amico; Daniel J. Freeman; Jian Jiang; Longbin Liu; John D. McCarter; Tisha San Miguel; Erin L. Mullady; Michael L. Schrag; Raju Subramanian; Jin Tang; Robert C. Wahl; Ling Wang; Douglas A. Whittington; Tian Wu; Ning Xi; Yang Xu; Peter Yakowec; Kevin Yang; Leeanne Zalameda; Nancy R. Zhang; Paul E. Hughes; Mark H. Norman

Phosphoinositide 3-kinase α (PI3Kα) is a lipid kinase that plays a key regulatory role in several cellular processes. The mutation or amplification of this kinase in humans has been implicated in the growth of multiple tumor types. Consequently, PI3Kα has become a target of intense research for drug discovery. Our studies began with the identification of benzothiazole compound 1 from a high throughput screen. Extensive SAR studies led to the discovery of sulfonamide 45 as an early lead, based on its in vitro cellular potency. Subsequent modifications of the central pyrimidine ring dramatically improved enzyme and cellular potency and led to the identification of chloropyridine 70. Further arylsulfonamide SAR studies optimized in vitro clearance and led to the identification of 82 as a potent dual inhibitor of PI3K and mTOR. This molecule exhibited potent enzyme and cell activity, low clearance, and high oral bioavailability. In addition, compound 82 demonstrated tumor growth inhibition in U-87 MG, A549, and HCT116 tumor xenograft models.


Journal of Medicinal Chemistry | 2012

Structure-Based Design of Novel Class II c-Met Inhibitors: 2. SAR and Kinase Selectivity Profiles of the Pyrazolone Series

Longbin Liu; Mark H. Norman; Matthew R. Lee; Ning Xi; Aaron C. Siegmund; Alessandro Boezio; Shon Booker; Debbie Choquette; Noel D. D’Angelo; Julie Germain; Kevin Yang; Yajing Yang; Yihong Zhang; Steven Bellon; Douglas A. Whittington; Jean-Christophe Harmange; Celia Dominguez; Tae-Seong Kim; Isabelle Dussault

As part of our effort toward developing an effective therapeutic agent for c-Met-dependent tumors, a pyrazolone-based class II c-Met inhibitor, N-(4-((6,7-dimethoxyquinolin-4-yl)oxy)-3-fluorophenyl)-1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazole-4-carboxamide (1), was identified. Knowledge of the binding mode of this molecule in both c-Met and VEGFR-2 proteins led to a novel strategy for designing more selective analogues of 1. Along with detailed SAR information, we demonstrate that the low kinase selectivity associated with class II c-Met inhibitors can be improved significantly. This work resulted in the discovery of potent c-Met inhibitors with improved selectivity profiles over VEGFR-2 and IGF-1R that could serve as useful tools to probe the relationship between kinase selectivity and in vivo efficacy in tumor xenograft models. Compound 59e (AMG 458) was ultimately advanced into preclinical safety studies.


Journal of Medicinal Chemistry | 2011

Structure-activity relationships of phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) dual inhibitors: investigations of various 6,5-heterocycles to improve metabolic stability.

Markian Stec; Kristin L. Andrews; Shon Booker; Sean Caenepeel; Daniel J. Freeman; Jian Jiang; Hongyu Liao; John D. McCarter; Erin L. Mullady; Tisha San Miguel; Raju Subramanian; Nuria A. Tamayo; Ling Wang; Kevin Yang; Leeanne Zalameda; Nancy Zhang; Paul E. Hughes; Mark H. Norman

N-(6-(6-Chloro-5-(4-fluorophenylsulfonamido)pyridin-3-yl)benzo[d]thiazol-2-yl)acetamide (1) is a potent and efficacious inhibitor of PI3Kα and mTOR in vitro and in vivo. However, in hepatocyte and in vivo metabolism studies, 1 was found to undergo deacetylation on the 2-amino substituent of the benzothiazole. As an approach to reduce or eliminate this metabolic deacetylation, a variety of 6,5-heterocyclic analogues were examined as an alternative to the benzothiazole ring. Imidazopyridazine 10 was found to have similar in vitro potency and in vivo efficacy relative to 1, while only minimal amounts of the corresponding deacetylated metabolite of 10 were observed in hepatocytes.


Journal of Medicinal Chemistry | 2012

Structure-based design of a novel series of potent, selective inhibitors of the class I phosphatidylinositol 3-kinases.

Adrian L. Smith; Noel D'angelo; Yunxin Y. Bo; Shon Booker; Victor J. Cee; Brad Herberich; Fang-Tsao Hong; Claire L.M. Jackson; Brian A. Lanman; Longbin Liu; Nobuko Nishimura; Liping H. Pettus; Anthony B. Reed; Seifu Tadesse; Nuria A. Tamayo; Ryan Wurz; Kevin Yang; Kristin L. Andrews; Douglas A. Whittington; John D. McCarter; Tisha San Miguel; Leeanne Zalameda; Jian Jiang; Raju Subramanian; Erin L. Mullady; Sean Caenepeel; Daniel J. Freeman; Ling Wang; Nancy R. Zhang; Tian Wu

A highly selective series of inhibitors of the class I phosphatidylinositol 3-kinases (PI3Ks) has been designed and synthesized. Starting from the dual PI3K/mTOR inhibitor 5, a structure-based approach was used to improve potency and selectivity, resulting in the identification of 54 as a potent inhibitor of the class I PI3Ks with excellent selectivity over mTOR, related phosphatidylinositol kinases, and a broad panel of protein kinases. Compound 54 demonstrated a robust PD-PK relationship inhibiting the PI3K/Akt pathway in vivo in a mouse model, and it potently inhibited tumor growth in a U-87 MG xenograft model with an activated PI3K/Akt pathway.


Journal of Medicinal Chemistry | 2012

Selective Class I Phosphoinositide 3-Kinase Inhibitors: Optimization of a Series of Pyridyltriazines Leading to the Identification of a Clinical Candidate, AMG 511

Mark H. Norman; Kristin L. Andrews; Yunxin Y. Bo; Shon Booker; Sean Caenepeel; Victor J. Cee; Noel D. D’Angelo; Daniel J. Freeman; Bradley J. Herberich; Fang-Tsao Hong; Claire L.M. Jackson; Jian Jiang; Brian A. Lanman; Longbin Liu; John D. McCarter; Erin L. Mullady; Nobuko Nishimura; Liping H. Pettus; Anthony B. Reed; Tisha San Miguel; Adrian L. Smith; Markian Stec; Seifu Tadesse; Andrew Tasker; Divesh Aidasani; Xiaochun Zhu; Raju Subramanian; Nuria A. Tamayo; Ling Wang; Douglas A. Whittington

The phosphoinositide 3-kinase family catalyzes the phosphorylation of phosphatidylinositol-4,5-diphosphate to phosphatidylinositol-3,4,5-triphosphate, a secondary messenger which plays a critical role in important cellular functions such as metabolism, cell growth, and cell survival. Our efforts to identify potent, efficacious, and orally available phosphatidylinositol 3-kinase (PI3K) inhibitors as potential cancer therapeutics have resulted in the discovery of 4-(2-((6-methoxypyridin-3-yl)amino)-5-((4-(methylsulfonyl)piperazin-1-yl)methyl)pyridin-3-yl)-6-methyl-1,3,5-triazin-2-amine (1). In this paper, we describe the optimization of compound 1, which led to the design and synthesis of pyridyltriazine 31, a potent pan inhibitor of class I PI3Ks with a superior pharmacokinetic profile. Compound 31 was shown to potently block the targeted PI3K pathway in a mouse liver pharmacodynamic model and inhibit tumor growth in a U87 malignant glioma glioblastoma xenograft model. On the basis of its excellent in vivo efficacy and pharmacokinetic profile, compound 31 was selected for further evaluation as a clinical candidate and was designated AMG 511.


Journal of Medicinal Chemistry | 2015

Discovery of 1H-Pyrazol-3(2H)-ones as Potent and Selective Inhibitors of Protein Kinase R-like Endoplasmic Reticulum Kinase (PERK).

Adrian L. Smith; Kristin L. Andrews; Holger Beckmann; Steven Bellon; Pedro J. Beltran; Shon Booker; Hao Chen; Young-Ah Chung; Noel D. D’Angelo; Jennifer Dao; Kenneth R. Dellamaggiore; Peter Jaeckel; Richard Kendall; Katja Labitzke; Alexander M. Long; Silvia Materna-Reichelt; Petia Mitchell; Mark H. Norman; David Powers; Mark Rose; Paul Shaffer; Michelle M. Wu; J. Russell Lipford

The structure-based design and optimization of a novel series of selective PERK inhibitors are described resulting in the identification of 44 as a potent, highly selective, and orally active tool compound suitable for PERK pathway biology exploration both in vitro and in vivo.


Journal of Medicinal Chemistry | 2016

Discovery and Optimization of Quinazolinone-pyrrolopyrrolones as Potent and Orally Bioavailable Pan-Pim Kinase Inhibitors

Liping H. Pettus; Kristin L. Andrews; Shon Booker; Jie Chen; Victor J. Cee; Frank Chavez; Yuping Chen; Heather Eastwood; Nadia Guerrero; Bradley J. Herberich; Dean Hickman; Brian A. Lanman; Jimmy Laszlo; Matthew R. Lee; J. Russell Lipford; Bethany Mattson; Christopher Mohr; Yen Nguyen; Mark H. Norman; David Powers; Anthony B. Reed; Karen Rex; Christine Sastri; Nuria A. Tamayo; Paul Wang; Jeffrey T. Winston; Bin Wu; Tian Wu; Ryan Wurz; Yang Xu

The high expression of proviral insertion site of Moloney murine leukemia virus kinases (Pim-1, -2, and -3) in cancers, particularly the hematopoietic malignancies, is believed to play a role in promoting cell survival and proliferation while suppressing apoptosis. The three isoforms of Pim protein appear largely redundant in their oncogenic functions. Thus, a pan-Pim kinase inhibitor is highly desirable. However, cell active pan-Pim inhibitors have proven difficult to develop because Pim-2 has a low Km for ATP and therefore requires a very potent inhibitor to effectively block the kinase activity at cellular ATP concentrations. Herein, we report a series of quinazolinone-pyrrolopyrrolones as potent and selective pan-Pim inhibitors. In particular, compound 17 is orally efficacious in a mouse xenograft model (KMS-12 BM) of multiple myeloma, with 93% tumor growth inhibition at 50 mg/kg QD upon oral dosing.


Cancer Research | 2016

Abstract 2861: Validation of PERK as an oncology target: A role for the unfolded protein response in cancer

Ken Dellamaggiore; Petia Mitchell; Ji-Rong Sun; Jeffrey A. Jones; Tony Muchamuel; David Hollenback; Seifu Tadesse; Shon Booker; Fang-Tsao Hong; Adrian L. Smith; Mark Rose; Pedro J. Beltran; James R. Lipford

The Unfolded Protein Response (UPR) is a cellular stress response to stressors that induce accumulation of unfolded proteins in the endoplasmic reticulum (aka ER stress). The UPR protects cells from ER stress by increasing the capacity of the ER and attenuating bulk translation. Intense or unresolved ER stress induces apoptosis through pro-apoptotic factors like CHoP. The UPR is activated in tumors, especially those of hematological origin. PERK, a UPR sensor-kinase, is highly active in these settings and might be an attractive target in oncology. We have generated multiple potent, selective PERK inhibitor scaffolds. Low doses of PERK inhibitor ( Emerging data might provide a solution to these challenges. PERK IP-kinase assays demonstrate that compound binding at any dose activates PERK and this activity is retained after compound removal. Exposure modeling in vitro demonstrates that transient dosing followed by compound removal results in a conventional sigmoidal dose-response curve for viability. Intermittent dosing in vivo results in CHoP induction and tumor growth inhibition even at very high doses of PERK, consistent with PERK activation following compound clearance. These findings suggest that optimized scheduling might drive robust tumor growth inhibition with reduced risk of toxicity and facilitate a standard clinical dose escalation. Citation Format: Ken Dellamaggiore, Petia Mitchell, Ji-Rong Sun, Jeffrey Jones, Tony Muchamuel, David Hollenback, Seifu Tadesse, Shon Booker, Fang-Tsao Hong, Adrian Smith, Mark Rose, Pedro Beltran, James R. Lipford. Validation of PERK as an oncology target: A role for the unfolded protein response in cancer. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 2861.


Archive | 2005

Compounds and methods of use

Tae-Seong Kim; Jean-Christophe Harmange; David Bauer; Shon Booker; Yuan Cheng; Shimin Xu; Ning Xi; Joseph L. Kim; Andrew Tasker

Collaboration


Dive into the Shon Booker's collaboration.

Researchain Logo
Decentralizing Knowledge