Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shona Pedersen is active.

Publication


Featured researches published by Shona Pedersen.


Journal of extracellular vesicles | 2015

Applying extracellular vesicles based therapeutics in clinical trials - an ISEV position paper.

Thomas Lener; Mario Gimona; Ludwig Aigner; Verena Börger; Edit I. Buzás; Giovanni Camussi; Nathalie Chaput; Devasis Chatterjee; Felipe A. Court; Hernando A. del Portillo; Lorraine O'Driscoll; Stefano Fais; Juan M. Falcon-Perez; Ursula Felderhoff-Mueser; Lorenzo Fraile; Yong Song Gho; André Görgens; Ramesh C. Gupta; An Hendrix; Dirk M. Hermann; Andrew F. Hill; Fred H. Hochberg; Peter A. Horn; Dominique P.V. de Kleijn; Lambros Kordelas; Boris W. Kramer; Eva Maria Krämer-Albers; Sandra Laner-Plamberger; Saara Laitinen; Tommaso Leonardi

Extracellular vesicles (EVs), such as exosomes and microvesicles, are released by different cell types and participate in physiological and pathophysiological processes. EVs mediate intercellular communication as cell-derived extracellular signalling organelles that transmit specific information from their cell of origin to their target cells. As a result of these properties, EVs of defined cell types may serve as novel tools for various therapeutic approaches, including (a) anti-tumour therapy, (b) pathogen vaccination, (c) immune-modulatory and regenerative therapies and (d) drug delivery. The translation of EVs into clinical therapies requires the categorization of EV-based therapeutics in compliance with existing regulatory frameworks. As the classification defines subsequent requirements for manufacturing, quality control and clinical investigation, it is of major importance to define whether EVs are considered the active drug components or primarily serve as drug delivery vehicles. For an effective and particularly safe translation of EV-based therapies into clinical practice, a high level of cooperation between researchers, clinicians and competent authorities is essential. In this position statement, basic and clinical scientists, as members of the International Society for Extracellular Vesicles (ISEV) and of the European Cooperation in Science and Technology (COST) program of the European Union, namely European Network on Microvesicles and Exosomes in Health and Disease (ME-HaD), summarize recent developments and the current knowledge of EV-based therapies. Aspects of safety and regulatory requirements that must be considered for pharmaceutical manufacturing and clinical application are highlighted. Production and quality control processes are discussed. Strategies to promote the therapeutic application of EVs in future clinical studies are addressed.


Protein Science | 2009

High probability of disrupting a disulphide bridge mediated by an endogenous excited tryptophan residue

Maria Teresa Neves-Petersen; Zygmunt Gryczynski; Joseph R. Lakowicz; Peter Fojan; Shona Pedersen; Evamaria I. Petersen; Steffen B. Petersen

It is well known that ultraviolet (UV) radiation may reduce or even abolish the biological activity of proteins and enzymes. UV light, as a component of sunlight, is illuminating all light‐exposed parts of living organisms, partly composed of proteins and enzymes. Although a considerable amount of empirical evidence for UV damage has been compiled, no deeper understanding of this important phenomenon has yet emerged. The present paper presents a detailed analysis of a classical example of UV‐induced changes in three‐dimensional structure and activity of a model enzyme, cutinase from Fusarium solani pisi. The effect of illumination duration and power has been investigated. A photon‐induced mechanism responsible for structural and functional changes is proposed. Tryptophan excitation energy disrupts a neighboring disulphide bridge, which in turn leads to altered biological activity and stability. The loss of the disulphide bridge has a pronounced effect on the fluorescence quantum yield, which has been monitored as a function of illumination power. A general theoretical model for slow two‐state chemical exchange is formulated, which allows for calculation of both the mean number of photons involved in the process and the ratio between the quantum yields of the two states. It is clear from the present data that the likelihood for UV damage of proteins is directly proportional to the intensity of the UV radiation. Consistent with the loss of the disulphide bridge, a complex pH‐dependent change in the fluorescence lifetimes is observed. Earlier studies in this laboratory indicate that proteins are prone to such UV‐induced radiation damage because tryptophan residues typically are located as next spatial neighbors to disulphide bridges. We believe that these observations may have far‐reaching implications for protein stability and for assessing the true risks involved in increasing UV radiation loads on living organisms.


Journal of extracellular vesicles | 2013

Extracellular Vesicle (EV) Array: microarray capturing of exosomes and other extracellular vesicles for multiplexed phenotyping

Malene Jørgensen; Rikke Bæk; Shona Pedersen; Evo Kristina Lindersson Søndergaard; Søren Risom Kristensen; Kim Varming

Background Exosomes are one of the several types of cell-derived vesicles with a diameter of 30–100 nm. These extracellular vesicles are recognized as potential markers of human diseases such as cancer. However, their use in diagnostic tests requires an objective and high-throughput method to define their phenotype and determine their concentration in biological fluids. To identify circulating as well as cell culture-derived vesicles, the current standard is immunoblotting or a flow cytometrical analysis for specific proteins, both of which requires large amounts of purified vesicles. Methods Based on the technology of protein microarray, we hereby present a highly sensitive Extracellular Vesicle (EV) Array capable of detecting and phenotyping exosomes and other extracellular vesicles from unpurified starting material in a high-throughput manner. To only detect the exosomes captured on the EV Array, a cocktail of antibodies against the tetraspanins CD9, CD63 and CD81 was used. These antibodies were selected to ensure that all exosomes captured are detected, and concomitantly excluding the detection of other types of microvesicles. Results The limit of detection (LOD) was determined on exosomes derived from the colon cancer cell line LS180. It clarified that supernatant from only approximately 104 cells was needed to obtain signals or that only 2.5×104 exosomes were required for each microarray spot (~1 nL). Phenotyping was performed on plasma (1–10 µL) from 7 healthy donors, which were applied to the EV Array with a panel of antibodies against 21 different cellular surface antigens and cancer antigens. For each donor, there was considerable heterogeneity in the expression levels of individual markers. The protein profiles of the exosomes (defined as positive for CD9, CD63 and CD81) revealed that only the expression level of CD9 and CD81 was approximately equal in the 7 donors. This implies questioning the use of CD63 as a standard exosomal marker since the expression level of this tetraspanin was considerably lower.


Blood | 2012

Amelioration of the severity of heparin-binding antithrombin mutations by posttranslational mosaicism

Irene Martínez-Martínez; José Navarro-Fernández; Alice Østergaard; Ricardo Gutiérrez-Gallego; J. Padilla; Nataliya Bohdan; Antonia Miñano; Cristina Pascual; Constantino Martínez; María Eugenia de la Morena-Barrio; Sonia Águila; Shona Pedersen; Søren Risom Kristensen; Vicente Vicente; Javier Corral

The balance between actions of procoagulant and anticoagulant factors protects organisms from bleeding and thrombosis. Thus, antithrombin deficiency increases the risk of thrombosis, and complete quantitative deficiency results in intrauterine lethality. However, patients homozygous for L99F or R47C antithrombin mutations are viable. These mutations do not modify the folding or secretion of the protein, but abolish the glycosaminoglycan-induced activation of antithrombin by affecting the heparin-binding domain. We speculated that the natural β-glycoform of antithrombin might compensate for the effect of heparin-binding mutations. We purified α- and β-antithrombin glycoforms from plasma of 2 homozygous L99F patients. Heparin affinity chromatography and intrinsic fluorescence kinetic analyses demonstrated that the reduced heparin affinity of the α-L99F glycoform (K(D), 107.9 ± 3nM) was restored in the β-L99F glycoform (K(D), 53.9 ± 5nM) to values close to the activity of α-wild type (K(D), 43.9 ± 0.4nM). Accordingly, the β-L99F glycoform was fully activated by heparin. Similar results were observed for recombinant R47C and P41L, other heparin-binding antithrombin mutants. In conclusion, we identified a new type of mosaicism associated with mutations causing heparin-binding defects in antithrombin. The presence of a fully functional β-glycoform together with the activity retained by these variants helps to explain the viability of homozygous and the milder thrombotic risk of heterozygous patients with these specific antithrombin mutations.


Journal of extracellular vesicles | 2016

A standardized method to determine the concentration of extracellular vesicles using tunable resistive pulse sensing

Robert Vogel; F.A.W. Coumans; Raluca Maltesen; Anita N. Böing; Katherine E. Bonnington; Marike L. D. Broekman; Murray F. Broom; Edit I. Buzás; Gunna Christiansen; Najat Hajji; Søren Risom Kristensen; Meta J. Kuehn; Sigrid Marie Lund; Sybren L. N. Maas; Rienk Nieuwland; Xabier Osteikoetxea; Rosalie Schnoor; Benjamin J. Scicluna; Mitch Shambrook; Jeroen de Vrij; Stephen I. Mann; Andrew F. Hill; Shona Pedersen

Background Understanding the pathogenic role of extracellular vesicles (EVs) in disease and their potential diagnostic and therapeutic utility is extremely reliant on in-depth quantification, measurement and identification of EV sub-populations. Quantification of EVs has presented several challenges, predominantly due to the small size of vesicles such as exosomes and the availability of various technologies to measure nanosized particles, each technology having its own limitations. Materials and Methods A standardized methodology to measure the concentration of extracellular vesicles (EVs) has been developed and tested. The method is based on measuring the EV concentration as a function of a defined size range. Blood plasma EVs are isolated and purified using size exclusion columns (qEV) and consecutively measured with tunable resistive pulse sensing (TRPS). Six independent research groups measured liposome and EV samples with the aim to evaluate the developed methodology. Each group measured identical samples using up to 5 nanopores with 3 repeat measurements per pore. Descriptive statistics and unsupervised multivariate data analysis with principal component analysis (PCA) were used to evaluate reproducibility across the groups and to explore and visualise possible patterns and outliers in EV and liposome data sets. Results PCA revealed good reproducibility within and between laboratories, with few minor outlying samples. Measured mean liposome (not filtered with qEV) and EV (filtered with qEV) concentrations had coefficients of variance of 23.9% and 52.5%, respectively. The increased variance of the EV concentration measurements could be attributed to the use of qEVs and the polydisperse nature of EVs. Conclusion The results of this study demonstrate the feasibility of this standardized methodology to facilitate comparable and reproducible EV concentration measurements.


Biopolymers | 2008

Thermodynamics and mechanism of cutinase stabilization by trehalose

R. Baptista; Shona Pedersen; Gonçalo J.M. Cabrita; Daniel E. Otzen; J. M. S. Cabral; Eduardo P. Melo

Trehalose has been widely used to stabilize cellular structures such as membranes and proteins. The effect of trehalose on the stability of the enzyme cutinase was studied. Thermal unfolding of cutinase reveals that trehalose delays thermal unfolding, thus increasing the temperature at the midpoint of unfolding by 7.2°. Despite this stabilizing effect, trehalose also favors pathways that lead to irreversible denaturation. Stopped‐flow kinetics of cutinase folding and unfolding was measured and temperature was introduced as experimental variable to assess the mechanism and thermodynamics of protein stabilization by trehalose. The main stabilizing effect of trehalose was to delay the rate constant of the unfolding of an intermediate. A full thermodynamic analysis of this step has revealed that trehalose induces the phenomenon of entropy–enthalpy compensation, but the enthalpic contribution increases more significantly leading to a net stabilizing effect that slows down unfolding of the intermediate. Regarding the molecular mechanism of stabilization, trehalose increases the compactness of the unfolded state. The conformational space accessible to the unfolded state decreases in the presence of trehalose when the unfolded state acquires residual native interactions that channel the folding of the protein. This residual structure results into less hydrophobic groups being newly exposed upon unfolding, as less water molecules are immobilized upon unfolding.


Journal of Thrombosis and Haemostasis | 2007

Detecting antithrombin deficiency may be a difficult task – more than one test is necessary

Søren Risom Kristensen; B Rasmussen; Shona Pedersen; Lise Bathum

Antithrombin (AT) is an important serine protease inhibitor that inhibits mainly coagulation factors IIa (FIIa) and Xa (FXa), but also FIXa and FXIa. AT deficiency is a well-known cause of thrombophilia [1,2] and therefore an obvious part of thrombophilia screening [3]. The activity of AT is usually quantitated by chromogenic tests measuring the inhibition of FIIa or FXa by AT in the presence of heparin (i.e. the heparin cofactor activity). In recommendations for thrombophilia tests, the type of AT activity assay is usually not recommended. Recently, however, focus on the importance of the type of assay has emerged. Ungerstedt et al. [4] described different levels in patients with AT deficiency using various Xainhibition methods, and in the United Kingdom National External Quality Assessment Scheme Jennings et al. [5] found varying results of certain AT deficiency variants depending on the assay conditions of the AT assays. We report on a case of AT deficiency in a patient who had had several thromboembolic attacks; the usual routine AT methods were unable to detect this, emphasizing the importance of the methodology.


Thrombosis and Haemostasis | 2010

Increased levels of citrullinated antithrombin in plasma of patients with rheumatoid arthritis and colorectal adenocarcinoma determined by a newly developed ELISA using a specific monoclonal antibody

Adriana Ordóñez; Jose Yelamos; Shona Pedersen; Antonia Miñano; Pablo Conesa-Zamora; Søren Risom Kristensen; Mogens Tornby Stender; Ole Thorlacius-Ussing; Irene Martínez-Martínez; Vicente Vicente; Javier Corral

Citrullination is a post-translational modification that plays essential roles in both physiological processes and disease. Recent studies have found increased levels of citrullinated antithrombin in patients with rheumatoid arthritis and in different malignant tumours. Antithrombin, the main haemostatic serpin, loses its anticoagulant function via citrullination, which might contribute to the pathogenesis or thrombotic side effects of these disorders. We have developed a specific monoclonal antibody against citrullinated antithrombin. We determined the levels of citrullinated antithrombin and anti-FXa activity in plasma from 66 donors, 17 patients with rheumatoid arthritis and 77 patients with colorectal adenocarcinoma (42 suffering from venous thrombosis). Healthy subjects had negligible amounts of citrullinated antithrombin in plasma (7.9 ± 22.1 ng/ml), while it significantly increased in patients with rheumatoid arthritis or adenocarcinoma (159.7 ± 237.6 ng/ml and 36.8 ± 66.1 ng/ml), levels that, however, did not modify the plasma anticoagulant activity. Moreover, we did not find association between citrullinated antithrombin and the thrombotic risk in patients with adenocarcinoma. In conclusion, we have developed an antibody specific for citrullinated antithrombin that allows its quantification in biological samples, offering a new tool for the analysis of citrullination in different diseases. We confirm increased levels of citrullinated antithrombin in plasma of patients with rheumatoid arthritis and adenocarcinoma. This modification, probably local, could have pathological consequences in both disorders, but only affects a minor fraction of plasma antithrombin, resulting in no significant reduction of global anticoagulant activity. This result explains the absence of association of this marker with an increased risk of thrombosis in patients with colorectal adenocarcinoma.


Diagnostic Molecular Pathology | 2011

Reference genes for gene expression analysis by real-time reverse transcription polymerase chain reaction of renal cell carcinoma.

Henriette Bjerregaard; Shona Pedersen; Søren Risom Kristensen; Niels Marcussen

BackgroundDifferentiation between malignant renal cell carcinoma and benign oncocytoma is of great importance to choose the optimal treatment. Accurate preoperative diagnosis of renal tumor is therefore crucial; however, existing imaging techniques and histologic examinations are incapable of providing an optimal differentiation profile. Analysis of gene expression of molecular markers is a new possibility but relies on appropriate standardization to compare different samples. The aim of this study was to identify stably expressed reference genes suitable for the normalization of results extracted from gene expression analysis of renal tumors. MethodsExpression levels of 8 potential reference genes (ATP5J, HMBS, HPRT1, PPIA, TBP, 18S, GAPDH, and POLR2A) were examined by real-time reverse transcription polymerase chain reaction in tumor and normal tissue from removed kidneys from 13 patients with renal cell carcinoma and 5 patients with oncocytoma. ResultsThe expression levels of genes were compared by gene stability value M, average gene stability M, pairwise variation V, and coefficient of variation CV. More candidates were not suitable for the purpose, but a combination of HMBS, PPIA, ATP5J, and TBP was found to be the best combination with an average gene stability value M of 0.9 and a CV of 0.4 in the 18 tumors and normal tissues. ConclusionsA combination of 4 genes, HMBS, PPIA, ATP5J, and TBP, is a possible reference in renal tumor gene expression analysis by reverse transcription polymerase chain reaction. A combination of four genes, HMBS, PPIA, ATP5J and TBP, being stably expressed in tissues from RCC is possible reference genes for gene expression analysis.


Scandinavian Journal of Clinical & Laboratory Investigation | 2016

Preanalytical, analytical, and biological variation of blood plasma submicron particle levels measured with nanoparticle tracking analysis and tunable resistive pulse sensing

Morten Mørk; Shona Pedersen; Jaco Botha; Sigrid Marie Lund; Søren Risom Kristensen

Abstract Background: Nanoparticle tracking analysis (NTA) and tunable resistive pulse sensing (TRPS) enable measurement of extracellular vesicles (EVs) in blood plasma but also measure other particles present in plasma. Complete isolation of EVs from similarly sized particles with full EV recovery is currently not possible due to limitations in existing isolation techniques. Aim: This study aimed to evaluate preanalytical, analytical, and biological variation of particle measurements with NTA and TRPS on blood plasma. Methods: Blood from 20 healthy subjects was sampled in the fasting and postprandial state. Platelet free plasma (PFP) was analyzed immediately and after a freeze-thaw cycle. Additionally, the effect of prandial state and a freeze-thaw cycle on EV-enriched particle fractions obtained via size-exclusion chromatography (SEC) was examined. Results: We observed analytical linearity in the range of 1.0–10.0 × 108 particles/mL for NTA and 1.0 × 108–1.8 × 109 particles/mL for TRPS. The analytical variation was generally below 10%. A considerable intra- and inter-individual variation was demonstrated with estimated reference intervals of 1.4 × 1011–1.2 × 1012 particles/mL for NTA and 1.8 × 108–1.6 × 109 particles/mL for TRPS. Food intake and to a lesser extent a freeze-thaw cycle affected particle populations in PFP and, similarly, in EV-enriched fractions. Conclusion: In this study NTA and TRPS enabled acceptably precise concentration and size measurement of submicron particles in PFP. An appreciable intra- and inter-individual biological variation was observed. In studies on particle populations in PFP or EV-enriched fractions, we recommend analysis of fresh, fasting samples.

Collaboration


Dive into the Shona Pedersen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge