Shoshiro Okada
Aichi Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shoshiro Okada.
Hepatology Research | 2012
Jun-Hua Fan; Guo-Gang Feng; Lei Huang; Koji Tsunekawa; Takashi Honda; Yoshiaki Katano; Yoshiki Hirooka; Hidemi Goto; Nobuhisa Kandatsu; Kazuo Ando; Yoshihiro Fujiwara; Tatsuro Koide; Shoshiro Okada; Naohisa Ishikawa
Aim: Lipopolysaccharide (LPS) causes apoptosis of hepatocytes, which is probably mediated by inflammatory substances released from Kupffer cells (KCs). Recently, we have reported that naofen, a newly found intracellular WD40‐repeat protein, has a role in inducing the apoptosis in HEK293 cells. Hence, the present study was undertaken to investigate a role of naofen in the LPS‐induced apoptosis of rat hepatocytes.
BMC Neuroscience | 2012
Misako Harato; Lei Huang; Fumio Kondo; Koji Tsunekawa; Guo-Gang Feng; Jun-Hua Fan; Naohisa Ishikawa; Yoshihiro Fujiwara; Shoshiro Okada
BackgroundBupivacaine-induced neurotoxicity has been shown to occur through apoptosis. Recently, bupivacaine was shown to elicit reactive oxygen species (ROS) production and induce apoptosis accompanied by activation of p38 mitogen-activated protein kinase (MAPK) in a human neuroblastoma cell line. We have reported that WDR35, a WD40-repeat protein, may mediate apoptosis through caspase-3 activation. The present study was undertaken to test whether bupivacaine induces apoptosis in mouse neuroblastoma Neuro2a cells and to determine whether ROS, p38 MAPK, and WDR35 are involved.ResultsOur results showed that bupivacaine induced ROS generation and p38 MAPK activation in Neuro2a cells, resulting in apoptosis. Bupivacaine also increased WDR35 expression in a dose- and time-dependent manner. Hydrogen peroxide (H2O2) also increased WDR35 expression in Neuro2a cells. Antioxidant (EUK-8) and p38 MAPK inhibitor (SB202190) treatment attenuated the increase in caspase-3 activity, cell death and WDR35 expression induced by bupivacaine or H2O2. Although transfection of Neuro2a cells with WDR35 siRNA attenuated the bupivacaine- or H2O2-induced increase in expression of WDR35 mRNA and protein, in contrast to our previous studies, it did not inhibit the increase in caspase-3 activity in bupivacaine- or H2O2-treated cells.ConclusionsIn summary, our results indicated that bupivacaine induced apoptosis in Neuro2a cells. Bupivacaine induced ROS generation and p38 MAPK activation, resulting in an increase in WDR35 expression, in these cells. However, the increase in WDR35 expression may not be essential for the bupivacaine-induced apoptosis in Neuro2a cells. These results may suggest the existence of another mechanism of bupivacaine-induced apoptosis independent from WDR35 expression in Neuro2a cells.
PLOS ONE | 2014
Lei Huang; Fumio Kondo; Masahiko Gosho; Guo-Gang Feng; Misako Harato; Zhong-yuan Xia; Naohisa Ishikawa; Yoshihiro Fujiwara; Shoshiro Okada
We previously reported that bupivacaine induces reactive oxygen species (ROS) generation, p38 mitogen-activated protein kinase (MAPK) activation and nuclear factor-kappa B activation, resulting in an increase in expression of WD repeat-containing protein 35 (WDR35) in mouse neuroblastoma Neuro2a cells. However, the identity of signaling upstream of p38 MAPK pathways to WDR35 expression remains unclear. It has been shown that AMP-activated protein kinase (AMPK) can activate p38 MAPK through diverse mechanisms. In addition, several kinases acting upstream of AMPK have been identified including Ca2+/calmodulin-dependent protein kinase kinase (CaMKK). Recent studies reported that AMPK may be involved in bupivacaine-induced cytotoxicity in Schwann cells and in human neuroblastoma SH-SY5Y cells. The present study was undertaken to test whether CaMKK and AMPK are involved in bupivacaine-induced WDR35 expression in Neuro2a cells. Our results showed that bupivacaine induced activation of AMPK and p38 MAPK in Neuro2a cells. The AMPK inhibitors, compound C and iodotubercidin, attenuated the bupivacaine-induced activation of AMPK and p38 MAPK, resulting in an inhibition of the bupivacaine-induced increase in WDR35 expression. Treatment with the CaMKK inhibitor STO-609 also attenuated the bupivacaine-induced activation of AMPK and p38 MAPK, resulting in an inhibition of the bupivacaine-induced increase in WDR35 expression. These results suggest that bupivacaine activates AMPK and p38 MAPK via CaMKK in Neuro2a cells, and that the CaMKK/AMPK/p38 MAPK pathway is involved in regulating WDR35 expression.
PLOS ONE | 2015
Tamami Ukaji; Yinzhi Lin; Kouji Banno; Shoshiro Okada; Kazuo Umezawa
Previously we isolated migracin A from a Streptomyces culture filtrate as an inhibitor of cancer cell migration. In the present research, we found that migracin A inhibited migration and invasion of ovarian clear cell carcinoma ES-2 cells. In the course of our mechanistic study, migracin A was shown to enhance vasohibin-1 expression in an angiogenesis array. We also confirmed that it increased the mRNA expression of this protein. Moreover, overexpression of vasohibin-1 lowered the migration but not the invasion of ES-2 cells. Then, we looked for another target protein employing a motility array, and found that migracin A lowered the IGF-1 expression. Knockdown of IGF-1 by siRNA decreased the migration and invasion of ES-2 cells. Migracin A also decreased Akt phosphorylation involved in the downstream signaling. Crosstalk analysis indicated that overexpression of vasohibin-1 decreased the IGF-1 expression. On the other hand, it showed no direct anticancer activity in terms of the ES-2 growth in agar. Migracin A inhibited the migration and IGF-1 expression in not only ES-2 but also another ovarian clear cell carcinoma JHOC-5 cells. In addition, it also inhibited capillary tube formation of human umbilical vein endothelial cells. Since its cytotoxicity is very low, migracin A may be a candidate for an anti-metastasis agent not exhibiting prominent toxicity.
International Journal of Cardiology | 2013
Yoshihiko Kakinuma; Shoshiro Okada; Munenobu Nogami; Yoshitaka Kumon
BACKGROUND Oestrogen is known to play a cardioprotective role in cardiovascular diseases, as demonstrated in a number of animal studies. However, few human studies have investigated sex-based differences with regard to cardiac glucose uptake using (18)F-fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT). METHODS Therefore, we evaluated healthy male and female subjects who underwent FDG-PET/CT examination to determine whether there was a sex-related difference in cardiac glucose uptake with age. RESULTS In females, the prevalence of maximal FDG uptake (PET score 2) demonstrated a convex pattern with ageing, and it peaked at age 51-60 years in the females, gradually decreasing to a minimum at age >70 years. In contrast, the prevalence of maximal FDG uptake by age in males was a mirror image of that in females, i.e. it formed a concave pattern with a nadir at 61-70 years, followed by an increase in the prevalence. These findings suggest that female hearts depend more on glucose as an energy substrate as they age, however, efficient glucose uptake is attenuated with increasing age. In contrast, the male heart sustains its glucose uptake capacity at age >70 years. CONCLUSION This characteristic sex-based difference in cardiac glucose uptake might be related to the female predominance of Takotsubo cardiomyopathy.
Bioorganic & Medicinal Chemistry Letters | 2017
Kulrawee Sidthipong; Jun Ma; Wei Lin Yu; Yan Feng Wang; Susumu Kobayashi; Satoshi Kishino; Naoki Koide; Takashi Yokochi; Kuniki Kato; Shoshiro Okada; Kazuo Umezawa
(-)-Dehydroxymethylepoxyquinomicin ((-)-DHMEQ, 1) is a specific inhibitor of NF-κB. It binds to SH group in the specific cysteine residue of NF-κB components with its epoxide moiety to inhibit DNA binding. In the present research, we have designed and synthesized an epoxide-free analog called (S)-β-salicyloylamino-α-exo-methylene-ƴ-butyrolactone (SEMBL, 3). SEMBL inhibited DNA binding of NF-κB component p65 in vitro. It inhibited LPS-induced NF-κB activation, iNOS expression, and inflammatory cytokine secretions. It also inhibited NF-κB and cellular invasion in ovarian carcinoma ES-2 cells. Moreover, its stability in aqueous solution was greatly enhanced compared with (-)-DHMEQ. Thus, SEMBL has a potential to be a candidate for a new anti-inflammatory and anticancer agent.
BMC Neuroscience | 2013
Koji Tsunekawa; Fumio Kondo; Teruhiko Okada; Guo-Gang Feng; Lei Huang; Naohisa Ishikawa; Shoshiro Okada
BackgroundDomoic acid (DA) is an excitatory amino acid analogue of kainic acid (KA) that acts via activation of glutamate receptors to elicit a rapid and potent excitotoxic response, resulting in neuronal cell death. Recently, DA was shown to elicit reactive oxygen species (ROS) production and induce apoptosis accompanied by activation of p38 mitogen-activated protein kinase (MAPK) in vitro. We have reported that WDR35, a WD-repeat protein, may mediate apoptosis in several animal models. In the present study, we administered DA to rats intraperitoneally, then used liquid chromatography/ion trap tandem mass spectrometry (LC-MS/MS) to identify and quantify DA in the brains of the rats and performed histological examinations of the hippocampus. We further investigated the potential involvement of glutamate receptors, ROS, p38 MAPK, and WDR35 in DA-induced toxicity in vivo.ResultsOur results showed that intraperitoneally administered DA was present in the brain and induced neurodegenerative changes including apoptosis in the CA1 region of the hippocampus. DA also increased the expression of WDR35 mRNA and protein in a dose- and time-dependent manner in the hippocampus. In experiments using glutamate receptor antagonists, the AMPA/KA receptor antagonist NBQX significantly attenuated the DA-induced increase in WDR35 protein expression, but the NMDA receptor antagonist MK-801 did not. In addition, the radical scavenger edaravone significantly attenuated the DA-induced increase in WDR35 protein expression. Furthermore, NBQX and edaravone significantly attenuated the DA-induced increase in p38 MAPK phosphorylation.ConclusionIn summary, our results indicated that DA activated AMPA/KA receptors and induced ROS production and p38 MAPK phosphorylation, resulting in an increase in the expression of WDR35 in vivo.
PLOS ONE | 2012
Takuma Higuchi; Shuji Sakamoto; Yoshihiko Kakinuma; Shoko Kai; Ken-ichi Yagyu; Hiroshi Todaka; Eunsup Chi; Shoshiro Okada; Takako Ujihara; Keiko Morisawa; Masafumi Ono; Yasunori Sugiyama; Waka Ishida; Atsuki Fukushima; Masayuki Tsuda; Yasutoshi Agata; Taketoshi Taniguchi
While NF90 has been known to participate in transcription, translation and microRNA biogenesis, physiological functions of this protein still remain unclear. To uncover this, we generated transgenic (Tg) mice using NF90 cDNA under the control of β-actin promoter. The NF90 Tg mice exhibited a reduction in body weight compared with wild-type mice, and a robust expression of NF90 was detected in skeletal muscle, heart and eye of the Tg mice. To evaluate the NF90 overexpression-induced physiological changes in the tissues, we performed a number of analyses including CT-analysis and hemodynamic test, revealing that the NF90 Tg mice developed skeletal muscular atrophy and heart failure. To explore causes of the abnormalities in the NF90 Tg mice, we performed histological and biochemical analyses for the skeletal and cardiac muscles of the Tg mice. Surprisingly, these analyses demonstrated that mitochondria in those muscular tissues of the Tg mice were degenerated by autophagy. To gain further insight into the cause for the mitochondrial degeneration, we identified NF90-associated factors by peptide mass fingerprinting. Of note, approximately half of the NF90-associated complexes were ribosome-related proteins. Interestingly, protein synthesis rate was significantly suppressed by high-expression of NF90. These observations suggest that NF90 would negatively regulate the function of ribosome via its interaction with the factors involved in the ribosome function. Furthermore, we found that the translations or protein stabilities of PGC-1 and NRF-1, which are critical transcription factors for expression of mitochondrial genes, were significantly depressed in the skeletal muscles of the NF90 Tg mice. Taken together, these findings suggest that the mitochondrial degeneration engaged in the skeletal muscle atrophy and the heart failure in the NF90 Tg mice may be caused by NF90-induced posttranscriptional repression of transcription factors such as PGC-1 and NRF-1 for regulating nuclear-encoded genes relevant to mitochondrial function.
International Journal of Cardiology | 2012
Yoshihiko Kakinuma; Shoshiro Okada; Munenobu Nogami; Shigetoshi Sano; Yoshitaka Kumon
evaluation and clinical implications of aortic stiffness and coronary flow reserve and their relation. Clin Cardiol 2008;31:304–9. [5] NemesA,Gavaller H, Csajbok E, Julesz J, Forster T, CsanadyM.Aortic stiffness is increased in acromegaly—a transthoracic echocardiographic study. Int J Cardiol 2008;124:121–3. [6] Nemes A, Gavaller H, Csajbok E, Lengyel C, Forster T, CsanadyM. Does diabetesmellitus facilitate aortic stiffening in acromegaly? Diabetes Res Clin Pract 2007;78:e7–8. [7] Csajbok E, Kalapos A,Gavaller H,WittmannT, CsanadyM, Forster T, Nemes A. Prognostic significance of aortic stiffness index in acromegaly—results froma 4-year follow-up. Int J Cardiol 2011;147:457–9.
Autonomic Neuroscience: Basic and Clinical | 2015
Kazuo Ando; Fumio Kondo; Naoko Yamaguchi; Masahiko Tachi; Minoru Fukayama; Kazuhiro Yoshikawa; Masahiko Gosho; Yoshihiro Fujiwara; Shoshiro Okada
Brain β-adrenoceptor stimulation can induce elevations of plasma levels of noradrenaline. However, there have been no detailed studies related to signaling pathways downstream of β-adrenoceptors responsible for central sympathetic outflow. In the present study, we pharmacologically examined the possibility that centrally administered isoproterenol can induce elevations of plasma noradrenaline levels in a brain prostaglandin-dependent manner. In addition, we also examined whether or not intracerebroventricular administration of isoproterenol could release endogenously synthesized prostaglandin (PG) E2 in the hypothalamic paraventricular nucleus (PVN) by using the brain microdialysis technique combined with liquid chromatography-ion trap tandem mass spectrometry (LC-ITMS(n)). Under urethane anesthesia, a femoral venous line was inserted for infusion of saline and a femoral arterial line was inserted for collecting blood samples. Next, animals were placed in a stereotaxic apparatus for application of test agents. Catecholamines in the plasma were extracted by alumina absorption and were assayed by high-performance liquid chromatography with electrochemical detection. Quantification of PGE2 in rat PVN microdialysates was performed by the LC-ITMS(n) method. We demonstrated that centrally administered isoproterenol-induced elevations of plasma noradrenaline could be mediated via activation of β-adrenoceptors and the downstream phospholipase A2-cyclooxygenase pathway. Furthermore, PGE2 in the PVN and the PGE2 receptor EP3 subtype appear to play an important role in the process. Our results suggest that central isoproterenol-induced sympathetic outflow is mediated via brain PGE2 in a PGE2 receptor EP3 subtype-dependent manner.