Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shoujiao Peng is active.

Publication


Featured researches published by Shoujiao Peng.


Free Radical Biology and Medicine | 2014

Gambogic acid induces apoptosis in hepatocellular carcinoma SMMC-7721 cells by targeting cytosolic thioredoxin reductase

Dongzhu Duan; Baoxin Zhang; Juan Yao; Yaping Liu; Jinyu Sun; Chunpo Ge; Shoujiao Peng; Jianguo Fang

The thioredoxin reductase (TrxR) isoenzymes, TrxR1 in cytosol or nucleus and TrxR2 in mitochondria, are essential mammalian selenocysteine (Sec)-containing flavoenzymes with a unique C-terminal -Gly-Cys-Sec-Gly active site. TrxRs are often overexpressed in a number of human tumors, and the reduction of their expression in malignant cells reverses tumor growth, making the enzymes attractive targets for anticancer drug development. Gambogic acid (GA), a natural product that has been used in traditional Chinese medicine for centuries, demonstrates potent anticancer activity in numerous types of human cancer cells and has entered phase II clinical trials. We discovered that GA may interact with TrxR1 to elicit oxidative stress and eventually induce apoptosis in human hepatocellular carcinoma SMMC-7721 cells. GA primarily targets the Sec residue in the antioxidant enzyme TrxR1 to inhibit its Trx-reduction activity, leading to accumulation of reactive oxygen species and collapse of the intracellular redox balance. Importantly, overexpression of functional TrxR1 in cells attenuates the cytotoxicity of GA, whereas knockdown of TrxR1 sensitizes cells to GA. Targeting of TrxR1 by GA thus discloses a previously unrecognized mechanism underlying the biological action of GA and provides useful information for further development of GA as a potential agent in the treatment of cancer.


Journal of Medicinal Chemistry | 2014

Dithiaarsanes Induce Oxidative Stress-Mediated Apoptosis in HL-60 Cells by Selectively Targeting Thioredoxin Reductase

Yaping Liu; Dongzhu Duan; Juan Yao; Baoxin Zhang; Shoujiao Peng; Huilong Ma; Yanlin Song; Jianguo Fang

The selenoprotein thioredoxin reductase (TrxR) plays a pivotal role in regulating cellular redox homeostasis and has attracted increasing attention as a promising anticancer drug target. We report here that 2-(4-aminophenyl)-1,3,2-dithiarsinane (PAO-PDT, 4), a potent and highly selective small molecule inhibitor of TrxR, stoichiometrically binds to the C-terminal selenocysteine/cysteine pair in the enzyme in vitro and induces oxidative stress-mediated apoptosis in HL-60 cells. The molecular action of 4 in cells involves inhibition of TrxR, elevation of reactive oxygen species, depletion of cellular thiols, and activation of caspase-3. Knockdown of TrxR sensitizes the cells to 4 treatment, whereas overexpression of the functional enzyme alleviates the cytotoxicity, providing physiological relevance for targeting TrxR by 4 in cells. The simplicity of the structure and the presence of an easily manipulated amine group will facilitate the further development of 4 as a potential cancer chemotherapeutic agent.


Journal of Medicinal Chemistry | 2015

Synthesis of piperlongumine analogues and discovery of nuclear factor erythroid 2-related factor 2 (Nrf2) activators as potential neuroprotective agents.

Shoujiao Peng; Baoxin Zhang; Xianke Meng; Juan Yao; Jianguo Fang

The cellular antioxidant system plays key roles in blocking or retarding the pathogenesis of adult neurodegenerative disorders as elevated oxidative stress has been implicated in the pathophysiology of such diseases. Molecules with the ability in enhancing the antioxidant defense thus are promising candidates as neuroprotective agents. We reported herein the synthesis of piperlongumine analogues and evaluation of their cytoprotection against hydrogen peroxide- and 6-hydroxydopamine-induced neuronal cell oxidative damage in the neuron-like PC12 cells. The structure-activity relationship was delineated after the cytotoxicity and protection screening. Two compounds (4 and 5) displayed low cytotoxicity and confer potent protection of PC12 cells from the oxidative injury via upregulation of a panel of cellular antioxidant molecules. Genetically silencing the transcription factor Nrf2, a master regulator of the cellular stress responses, suppresses the cytoprotection, indicating the critical involvement of Nrf2 for the cellular action of compounds 4 and 5 in PC12 cells.


Journal of Agricultural and Food Chemistry | 2014

Activation of the Phase II Enzymes for Neuroprotection by Ginger Active Constituent 6-Dehydrogingerdione in PC12 Cells

Juan Yao; Chunpo Ge; Dongzhu Duan; Baoxin Zhang; Xuemei Cui; Shoujiao Peng; Yaping Liu; Jianguo Fang

UNLABELLED The cellular endogenous antioxidant system plays pivotal roles in counteracting or retarding the pathogenesis of many neurodegenerative diseases. Molecules with the ability to enhance the antioxidant defense thus are promising candidates for neuroprotective drugs. 6-Dehydrogingerdione (6-DG), one of the major components of dietary ginger, has received increasing attention due to its multiple pharmacological activities. However, how this pleiotropic molecule works on the neuronal system has not been studied. This paper reports that 6-DG efficiently scavenges various free radicals in vitro and displays remarkable cytoprotection against oxidative stress-induced neuronal cell damage in the neuron-like rat pheochromocytoma cell line, PC12 cells. Pretreatment of PC12 cells with 6-DG significantly up-regulates a panel of phase II genes as well as the corresponding gene products, such as glutathione, heme oxygenase, NAD(P)H quinone oxidoreductase, and thioredoxin reductase. Mechanistic study indicates that activation of the Keap1-Nrf2-ARE pathway is the molecular basis for the cytoprotection of 6-DG. This is the first revelation of this novel mechanism of 6-DG as an Nrf2 activator against oxidative injury, providing the potential therapeutic use of 6-DG as neuroprotective agent.


Biochimica et Biophysica Acta | 2017

Securinine disturbs redox homeostasis and elicits oxidative stress-mediated apoptosis via targeting thioredoxin reductase

Junmin Zhang; Juan Yao; Shoujiao Peng; Xinming Li; Jianguo Fang

Thioredoxin reductase (TrxR) and thioredoxin (Trx) are two major components of the thioredoxin system, which plays essential roles in regulating cellular redox signaling. Mammalian TrxRs are essential seleno-flavoenzymes with a conserved penultimate selenocysteine (Sec) residue at the C-terminus, and have attracted considerable interests as promising targets for anticancer drugs. Securinine (SCR), a major active alkaloid lactone from the Chinese herbal medicine Securinega suffruticosa, has been established clinical success in treatment of neurological disorders. Recently, increasing evidence demonstrates that SCR has potential cytotoxicity to various types of tumor cells, which enables this old central nervous system drug as a potential cancer therapeutic agent. However, the mechanism underlying the anticancer activity of SCR is not well defined. We reported here that SCR inhibits both the purified TrxR and the enzyme in intact cells. SCR elicits accumulation of reactive oxygen species (ROS), elevation of oxidized glutathione and Trx, disturbs redox homeostasis, and eventually leads to oxidative stress-mediated HeLa cell apoptosis. Importantly, pharmacological inhibition or knockdown of TrxR sensitizes the cells to SCR treatment, underpinning the physiological significance of targeting TrxR by SCR. Our discovery discloses a novel mechanism underlying the anticancer activity of SCR and provides basic data for further development of SCR as a cancer chemotherapeutic drug.


Expert Opinion on Therapeutic Patents | 2017

Thioredoxin reductase inhibitors: a patent review

Baoxin Zhang; Junmin Zhang; Shoujiao Peng; Ruijuan Liu; Xinming Li; Yanan Hou; Xiao Han; Jianguo Fang

ABSTRACT Introduction: Mammalian thioredoxin reductases (TrxRs) are selenocysteine-containing homodimeric flavin enzymes that catalyze the NADPH-dependent reduction of oxidized thioredoxins. Increasing evidence indicates that TrxRs are potential targets for anticancer drug development. This review summarizes patented inhibitors of mammalian TrxRs with an emphasis on those having potential applications in treatment of cancer. Areas covered: A background introduction of TrxR as well as the relevance of TrxR and cancer is provided in the first part of this review. Then, a brief discussion of TrxR assays is followed in the second part. The patented TrxRs’ inhibitors that were categorized into four classes, i. e., metal complexes, Michael acceptors, sulfur/selenium-containing compounds and others, are summarized in the third part of the review. Expert opinion: There is currently no clinical anticancer drug that specifically targets TrxR. One major hurdle in finding a successful TrxR inhibitor as a therapeutic drug is the specific inhibition of TrxR by an inhibitor. As most inhibitors described in literature and patents target the selenol group in the C-terminus of TrxR enzymes, it is hard to avoid cross interactions of such inhibitors with thiols. Novel strategies are proposed to achieve discovery of highly selective inhibitors of TrxR enzymes.


ACS Chemical Neuroscience | 2018

Honokiol Alleviates Oxidative Stress-Induced Neurotoxicity via Activation of Nrf2

Yanan Hou; Shoujiao Peng; Xinming Li; Juan Yao; Jianqiang Xu; Jianguo Fang

Honokiol (Hon), a polyphenol and main active ingredient from the bark of Magnolia officinalis, has been documented as having multiple pharmacological functions, including neuroprotection. However, the mechanisms underlying its neuroprotective effects are not well-defined. In this study, we reported that Hon attenuates the H2O2- or 6-hydroxydopamine (6-OHDA)-induced apoptosis of PC12 cells by increasing the glutathione level and upregulating a multitude of cytoprotective proteins, including heme oxygenase 1, NAD(P)H:quinone oxidoreductase 1, thioredoxin 1, and thioredoxin reductase 1. Further studies reveal that Hon promotes transcription factor Nrf2 nuclear translocation and activation. Moreover, the cytoprotection of Hon was antagonized by silence of Nrf2 expression, highlighting the fact that Nrf2 is critically engaged in the cellular functions of Hon. Taken together, our study identified that Hon is an effective agonist of Nrf2 in the neuronal system and displays potent neuroprotection against oxidative stress-mediated PC12 cell damage. These findings indicate that Hon is promising for further development as a therapeutic drug against oxidative stress-related neurodegenerative disorders.


Journal of Agricultural and Food Chemistry | 2015

Xanthohumol, a Polyphenol Chalcone Present in Hops, Activating Nrf2 Enzymes To Confer Protection against Oxidative Damage in PC12 Cells

Juan Yao; Baoxin Zhang; Chunpo Ge; Shoujiao Peng; Jianguo Fang


Food & Function | 2015

Dual protection of hydroxytyrosol, an olive oil polyphenol, against oxidative damage in PC12 cells

Shoujiao Peng; Baoxin Zhang; Juan Yao; Dongzhu Duan; Jianguo Fang


Food & Function | 2015

Activation of Nrf2 target enzymes conferring protection against oxidative stress in PC12 cells by ginger principal constituent 6-shogaol

Shoujiao Peng; Juan Yao; Yaping Liu; Dongzhu Duan; Xiaolong Zhang; Jianguo Fang

Collaboration


Dive into the Shoujiao Peng's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge