Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shouqin Lü is active.

Publication


Featured researches published by Shouqin Lü.


Journal of Biological Chemistry | 2007

Impact of Carrier Stiffness and Microtopology on Two-dimensional Kinetics of P-selectin and P-selectin Glycoprotein Ligand-1 (PSGL-1) Interactions

Li Wu; Botao Xiao; Xiaoling Jia; Yan Zhang; Shouqin Lü; Juan Chen; Mian Long

Mechanics and surface microtopology of the molecular carrier influence cell adhesion, but the mechanisms underlying these effects are not well understood. We used a micropipette adhesion frequency assay to quantify how the carrier stiffness and microtopology affected two-dimensional kinetics of interacting adhesion molecules on two apposing surfaces. Interactions of P-selectin with P-selectin glycoprotein ligand-1 (PSGL-1) were used to demonstrate such effects by presenting the molecules on three carrier systems: human red blood cells (RBCs), human promyelocytic leukemia HL-60 cells, and polystyrene beads. Stiffening the carrier alone or in cooperation with roughing the surface lowered the two-dimensional affinity of interacting molecules by reducing the forward rate but not the reverse rate, whereas softening the carrier and roughing the surface had opposing effects in affecting two-dimensional kinetics. In contrast, the soluble antibody bound with similar three-dimensional affinity to surface-anchored P-selectin or PSGL-1 constructs regardless of carrier stiffness and microtopology. These results demonstrate that the carrier stiffness and microtopology of a receptor influences its rate of encountering and binding a surface ligand but does not subsequently affect the stability of binding. This provides new insights into understanding the rolling and tethering mechanism of leukocytes onto endothelium in both physiological and pathological processes.


Journal of Biological Chemistry | 2011

Determining β2-Integrin and Intercellular Adhesion Molecule 1 Binding Kinetics in Tumor Cell Adhesion to Leukocytes and Endothelial Cells by a Gas-driven Micropipette Assay

Changliang Fu; Chunfang Tong; Manliu Wang; Yuxin Gao; Yan Zhang; Shouqin Lü; Shile Liang; Cheng Dong; Mian Long

Interactions between polymorphonuclear neutrophils (PMNs) and tumor cells have been reported to facilitate the adhesion and subsequent extravasation of tumor cells through the endothelium under blood flow, both of which are mediated by binding β2-integrin to intercellular adhesion molecule 1 (ICAM-1). Here the adhesions between human WM9 metastatic melanoma cells, PMNs, and human pulmonary microvascular endothelial cells (HPMECs) were quantified by a gas-driven micropipette aspiration technique (GDMAT). Our data indicated that the cellular binding affinity of PMN-WM9 pair was 3.9-fold higher than that of the PMN-HPMEC pair. However, the effective binding affinities per molecular pair were comparable between the two cell pairs no matter whether WM9 cells or HPMECs were quiescent or cytokine-activated, indicating that the stronger adhesion between PMN-WM9 pair is mainly attributed to the high expression of ICAM-1 on WM9 cells. These results proposed an alternative mechanism, where WM9 melanoma cells adhere first with PMNs near vessel-wall regions and then bind to endothelial cells via PMNs under blood flow. In contrast, the adhesions between human MDA-MB-231 metastatic breast carcinoma cells and PMNs showed a comparable cellular binding affinity to PMN-HPMEC pair because the ICAM-1 expressions on MDA-MB-231 cells and HPMECs are similar. Furthermore, differences were observed in the intrinsic forward and reverse rates of the β2-integrin-ICAM-1 bond between PMN-TC and PMN-EC pairs. This GDMAT assay enables us to quantify the binding kinetics of cell adhesion molecules physiologically expressed on nucleated cells. The findings also further the understanding of leukocyte-facilitated tumor cell adhesion from the viewpoint of molecular binding kinetics.


Biophysical Journal | 2008

Low Spring Constant Regulates P-Selectin-PSGL-1 Bond Rupture

Yan Zhang; Ganyun Sun; Shouqin Lü; Ning Li; Mian Long

Forced dissociation of selectin-ligand bonds is crucial to such biological processes as leukocyte recruitment, thrombosis formation, and tumor metastasis. Although the bond rupture has been well known at high loading rate r(f) (>or=10(2) pN/s), defined as the product of spring constant k and retract velocity v, how the low r(f) (<10(2) pN/s) or the low k regulates the bond dissociation remains unclear. Here an optical trap assay was used to quantify the bond rupture at r(f) <or= 20 pN/s with low k ( approximately 10(-3)-10(-2) pN/nm) when P-selectin and P-selectin glycoprotein ligand 1 (PSGL-1) were respectively coupled onto two glass microbeads. Our data indicated that the bond rupture force f retained the similar values when r(f) increased up to 20 pN/s. It was also found that f varied with different combinations of k and v even at the same r(f). The most probable force, f*, was enhanced with the spring constant when k < 47.0 x 10(-3) pN/nm, indicating that the bond dissociation at low r(f) was spring constant dependent and that bond rupture force depended on both the loading rate and the mechanical compliance of force transducer. These results provide new insights into understanding the P-selectin glycoprotein ligand 1 bond dissociation at low r(f) or k.


Journal of Immunology | 2013

Distinct binding affinities of Mac-1 and LFA-1 in neutrophil activation

Ning Li; Debin Mao; Shouqin Lü; Chunfang Tong; Yan Zhang; Mian Long

Macrophage-1 Ag (Mac-1) and lymphocyte function-associated Ag-1 (LFA-1), two β2 integrins expressed on neutrophils (PMNs), mediate PMN recruitment cascade by binding to intercellular adhesive molecule 1. Distinct functions of LFA-1–initiating PMN slow rolling and firm adhesion but Mac-1–mediating cell crawling are assumed to be governed by the differences in their binding affinities and kinetic rates. In this study, we applied an adhesion frequency approach to compare their kinetics in the quiescent and activated states using three molecular systems, constitutively expressed receptors on PMNs, wild-type and high-affinity (HA) full-length constructs transfected on 293T cells, and wild-type and HA recombinant extracellular constructs. Data indicate that the difference in binding affinity between Mac-1 and LFA-1 is on-rate dominated with slightly or moderately varied off-rate. This finding was further confirmed when both β2 integrins were activated by chemokines (fMLF or IL-8), divalent cations (Mg2+ or Mn2+), or disulfide bond lockage on an HA state. Structural analyses reveal that such the kinetics difference is likely attributed to the distinct conformations at the interface of Mac-1 or LFA-1 and intercellular adhesive molecule 1. This work furthers the understandings in the kinetic differences between Mac-1 and LFA-1 and in their biological correlations with molecular activation and structural bases.


Journal of Biological Chemistry | 2012

The Cytosolic GH Loop Regulates the Phosphatidylinositol 4,5-Bisphosphate-induced Gating Kinetics of Kir2 Channels

Hai-Long An; Shouqin Lü; Junwei Li; Xuan-Yu Meng; Yong Zhan; Meng Cui; Mian Long; Hailin Zhang; Diomedes E. Logothetis

Background: The detailed mechanism of PIP2-induced Kir channel gating remains elusive. Results: Specific mutations increase the flexibility of the cytosolic GH loop and accelerate the PIP2-induced gating kinetics of Kir2 channels. Conclusion: Interactions of the GH loop with the N terminus regulate the PIP2-induced gating kinetics of Kir2 channels. Significance: We identify a novel region in Kir channels involved in the control of PIP2-induced gating. Inwardly rectifying K+ (Kir) channels set the resting membrane potential and regulate cellular excitability. The activity of Kir channels depends critically on the phospholipid PIP2. The molecular mechanism by which PIP2 regulates Kir channel gating is poorly understood. Here, we utilized a combination of computational and electrophysiological approaches to discern structural elements involved in regulating the PIP2-induced gating kinetics of Kir2 channels. We identify a novel role for the cytosolic GH loop. Mutations that directly or indirectly affect GH loop flexibility (e.g. V223L, E272G, D292G) increase both the on- and especially the off-gating kinetics. These effects are consistent with a model in which competing interactions between the CD and GH loops for the N terminus regulate the gating of the intracellular G loop gate.


Nature plants | 2017

Mechanical regulation of organ asymmetry in leaves

Jiyan Qi; Binbin Wu; Shiliang Feng; Shouqin Lü; Chunmei Guan; Xiao Zhang; Dengli Qiu; Yingchun Hu; Yihua Zhou; Chuanyou Li; Mian Long; Yuling Jiao

How appendages, such as plant leaves or animal limbs, develop asymmetric shapes remains a fundamental question in biology. Although ongoing research has revealed the genetic regulation of organ pattern formation, how gene activity ultimately directs organ shape remains unclear. Here, we show that leaf dorsoventral (adaxial-abaxial) polarity signals lead to mechanical heterogeneity of the cell wall, related to the methyl-esterification of cell-wall pectins in tomato and Arabidopsis. Numerical simulations predicate that mechanical heterogeneity is sufficient to produce the asymmetry seen in planar leaves. Experimental tests that alter pectin methyl-esterification, and therefore cell wall mechanical properties, support this model and lead to polar changes in gene expression, suggesting the existence of a feedback mechanism for mechanical signals in morphogenesis. Thus, mechanical heterogeneity within tissue may underlie organ shape asymmetry.Mechanical heterogeneity due to differences in methyl-esterification of cell wall pectins is sufficient to produce asymmetric leaf morphology, as predicted by a mathematical model and validated in Arabidopsis and tomato.


Lab on a Chip | 2017

Mimicking liver sinusoidal structures and functions using a 3D-configured microfluidic chip

Yu Du; Ning Li; Hao Yang; Chunhua Luo; Yixin Gong; Chunfang Tong; Yuxin Gao; Shouqin Lü; Mian Long

Physiologically, four major types of hepatic cells - the liver sinusoidal endothelial cells, Kupffer cells, hepatic stellate cells, and hepatocytes - reside inside liver sinusoids and interact with flowing peripheral cells under blood flow. It is hard to mimic an in vivo liver sinusoid due to its complex multiple cell-cell interactions, spatiotemporal construction, and mechanical microenvironment. Here we developed an in vitro liver sinusoid chip by integrating the four types of primary murine hepatic cells into two adjacent fluid channels separated by a porous permeable membrane, replicating livers key structures and configurations. Each type of cells was identified with its respective markers, and the assembled chip presented the liver-specific unique morphology of fenestration. The flow field in the liver chip was quantitatively analyzed by computational fluid dynamics simulations and particle tracking visualization tests. Intriguingly, co-culture and shear flow enhance albumin secretion independently or cooperatively, while shear flow alone enhances HGF production and CYP450 metabolism. Under lipopolysaccharide (LPS) stimulations, the hepatic cell co-culture facilitated neutrophil recruitment in the liver chip. Thus, this 3D-configured in vitro liver chip integrates the two key factors of shear flow and the four types of primary hepatic cells to replicate key structures, hepatic functions, and primary immune responses and provides a new in vitro model to investigate the short-duration hepatic cellular interactions under a microenvironment mimicking the physiology of a liver.


Biophysical Journal | 2012

Tyrosine Replacement of PSGL-1 Reduces Association Kinetics with P- and L-Selectin on the Cell Membrane

Botao Xiao; Chunfang Tong; Xiaoling Jia; Rui Guo; Shouqin Lü; Yan Zhang; Rodger P. McEver; Cheng Zhu; Mian Long

Binding of selectins to P-selectin glycoprotein ligand-1 (PSGL-1) mediates tethering and rolling of leukocytes on the endothelium during inflammation. Previous measurements obtained with a flow-chamber assay have shown that mutations of three tyrosines at the PSGL-1 N-terminus (Y46, Y48, and Y51) increase the reverse rates and their sensitivity to the force of bonds with P- and L-selectin. However, the effects of these mutations on the binding affinities and forward rates have not been studied. We quantified these effects by using an adhesion frequency assay to measure two-dimensional affinity and kinetic rates at zero force. Wild-type PSGL-1 has 2.2- to 8.5-fold higher binding affinities for P- and L-selectin than PSGL-1 mutants with two of three tyrosines substituted by phenylalanines, and 9.6- to 49-fold higher affinities than the PSGL-1 mutant with all three tyrosines replaced. In descending order, the affinity decreased from wild-type to Y48/51F, Y46/51F, Y46/48F, and Y46/48/51F. The affinity differences were attributed to major changes in the forward rate and minor changes in the reverse rate, suggesting that these tyrosines regulate the accessibility of PSGL-1 to P- and L-selectin via electrostatic interactions, which is supported by molecular-dynamics simulations. Our results provide insights into the structure-function relationship of receptor-ligand binding at a single-residue level.


PLOS ONE | 2011

Conformational Stability Analyses of Alpha Subunit I Domain of LFA-1 and Mac-1

Debin Mao; Shouqin Lü; Ning Li; Yan Zhang; Mian Long

β2 integrin of lymphocyte function-associated antigen-1 (LFA-1) or macrophage-1 antigen (Mac-1) binds to their common ligand of intercellular adhesion molecule-1 (ICAM-1) and mediates leukocyte-endothelial cell (EC) adhesions in inflammation cascade. Although the two integrins are known to have distinct functions, the corresponding micro-structural bases remain unclear. Here (steered-)molecular dynamics simulations were employed to elucidate the conformational stability of α subunit I domains of LFA-1 and Mac-1 in different affinity states and relevant I domain-ICAM-1 interaction features. Compared with low affinity (LA) Mac-1, the LA LFA-1 I domain was unstable in the presence or absence of ICAM-1 ligand, stemming from diverse orientations of its α7-helix with different motifs of zipper-like hydrophobic junction between α1- and α7-helices. Meanwhile, spontaneous transition of LFA-1 I domain from LA state to intermediate affinity (IA) state was first visualized. All the LA, IA, and high affinity (HA) states of LFA-1 I domain and HA Mac-1 I domain were able to bind to ICAM-1 ligand effectively, while LA Mac-1 I domain was unfavorable for binding ligand presumably due to the specific orientation of S144 side-chain that capped the MIDAS ion. These results furthered our understanding in correlating the structural bases with their functions of LFA-1 and Mac-1 integrins from the viewpoint of I domain conformational stability and of the characteristics of I domain-ICAM-1 interactions.


Biophysical Journal | 2012

Molecular dynamics simulation of shear- and stretch-induced dissociation of P-selectin/PSGL-1 complex

Yingyong Kang; Shouqin Lü; Peng Ren; Bo Huo; Mian Long

By mediating the tethering and rolling of leukocytes on vascular surfaces, the interactions between P-selectin and the P-selectin glycoprotein ligand 1 (PSGL-1) play crucial roles during inflammation cascade. Tensile stretch produced by rolling leukocytes and shear stress exerted by blood flow constitute the two types of mechanical forces that act on the P-selectin/PSGL-1 bond. These forces modulate not only dissociation kinetics of this bond, but also the leukocyte adhesion dynamics. However, the respective contribution of the two forces to bond dissociation and to the corresponding microstructural bases remains unclear. To mimic the mechanical microenvironment, we developed two molecular dynamics approaches; namely, an approach involving the shear flow field with a controlled velocity gradient, and the track dragging approach with a defined trajectory. With each approach or with both combined, we investigate the microstructural evolution and dissociation kinetics of the P-LE/SGP-3 construct, which is the smallest functional unit of the P-selectin/PSGL-1 complex. The results demonstrate that both shear flow and tensile stretch play important roles in the collapse of the construct and that, before bond dissociation, the former causes more destruction of domains within the construct than the latter. Dissociation of the P-LE/SGP-3 construct features intramolecular destruction of the epidermal-growth-factor (EGF) domain and the breaking of hydrogen-bond clusters at the P-selectin-lectin/EGF interface. Thus, to better understand how mechanics impacts the dissociation kinetics of the P-selectin/PSGL-1 complex, we propose herein two approaches to mimic its physiological mechanical environment.

Collaboration


Dive into the Shouqin Lü's collaboration.

Top Co-Authors

Avatar

Mian Long

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yan Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ning Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Chunfang Tong

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Hao Yang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Shiliang Feng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Debin Mao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Hailin Zhang

Hebei Medical University

View shared research outputs
Top Co-Authors

Avatar

Lüwen Zhou

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yixin Gong

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge