Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shouting Liu is active.

Publication


Featured researches published by Shouting Liu.


Clinical Cancer Research | 2014

Gambogic Acid Induces Apoptosis in Imatinib-Resistant Chronic Myeloid Leukemia Cells via Inducing Proteasome Inhibition and Caspase-Dependent Bcr-Abl Downregulation

Xianping Shi; Xin Chen; Xiaofen Li; Xiaoying Lan; Chong Zhao; Shouting Liu; Hongbiao Huang; Ningning Liu; Siyan Liao; Wenbin Song; Ping Zhou; Shunqing Wang; Li Xu; Xuejun Wang; Q. Ping Dou; Jinbao Liu

Purpose: Chronic myelogenous leukemia (CML) is characterized by the constitutive activation of Bcr-Abl tyrosine kinase. Bcr-Abl-T315I is the predominant mutation that causes resistance to imatinib, cytotoxic drugs, and the second-generation tyrosine kinase inhibitors. The emergence of imatinib resistance in patients with CML leads to searching for novel approaches to the treatment of CML. Gambogic acid, a small molecule derived from Chinese herb gamboges, has been approved for phase II clinical trial for cancer therapy by the Chinese Food and Drug Administration (FDA). In this study, we investigated the effect of gambogic acid on cell survival or apoptosis in CML cells bearing Bcr-Abl-T315I or wild-type Bcr-Abl. Experimental Design: CML cell lines (KBM5, KBM5-T315I, and K562), primary cells from patients with CML with clinical resistance to imatinib, and normal monocytes from healthy volunteers were treated with gambogic acid, imatinib, or their combination, followed by measuring the effects on cell growth, apoptosis, and signal pathways. The in vivo antitumor activity of gambogic acid and its combination with imatinib was also assessed with nude xenografts. Results: Gambogic acid induced apoptosis and cell proliferation inhibition in CML cells and inhibited the growth of imatinib-resistant Bcr-Abl-T315I xenografts in nude mice. Our data suggest that GA-induced proteasome inhibition is required for caspase activation in both imatinib-resistant and -sensitive CML cells, and caspase activation is required for gambogic acid–induced Bcr-Abl downregulation and apoptotic cell death. Conclusions: These findings suggest an alternative strategy to overcome imatinib resistance by enhancing Bcr-Abl downregulation with the medicinal compound gambogic acid, which may have great clinical significance in imatinib-resistant cancer therapy. Clin Cancer Res; 20(1); 151–63. ©2013 AACR.


Cell Reports | 2013

Gambogic Acid Is a Tissue-Specific Proteasome Inhibitor In Vitro and In Vivo

Xiaofen Li; Shouting Liu; Hongbiao Huang; Ningning Liu; Chong Zhao; Siyan Liao; Changshan Yang; Yurong Liu; Canguo Zhao; Shujue Li; Xiaoyu Lu; Chunjiao Liu; Lixia Guan; Kai Zhao; Xiaoqing Shi; Wenbin Song; Ping Zhou; Xiaoxian Dong; Haiping Guo; Guanmei Wen; Change Zhang; Lili Jiang; Ningfang Ma; Bing Li; Shunqing Wang; Huo Tan; Xuejun Wang; Q. Ping Dou; Jinbao Liu

Gambogic acid (GA) is a natural compound derived from Chinese herbs that has been approved by the Chinese Food and Drug Administration for clinical trials in cancer patients; however, its molecular targets have not been thoroughly studied. Here, we report that GA inhibits tumor proteasome activity, with potency comparable to bortezomib but much less toxicity. First, GA acts as a prodrug and only gains proteasome-inhibitory function after being metabolized by intracellular CYP2E1. Second, GA-induced proteasome inhibition is a prerequisite for its cytotoxicity and anticancer effect without off-targets. Finally, because expression of the CYP2E1 gene is very high in tumor tissues but low in many normal tissues, GA could therefore produce tissue-specific proteasome inhibition and tumor-specific toxicity, with clinical significance for designing novel strategies for cancer treatment.


PLOS ONE | 2012

L-Carnitine Is an Endogenous HDAC Inhibitor Selectively Inhibiting Cancer Cell Growth In Vivo and In Vitro

Hongbiao Huang; Ningning Liu; Haiping Guo; Siyan Liao; Xiaofen Li; Changshan Yang; Shouting Liu; Wenbin Song; Chunjiao Liu; Lixia Guan; Bing Li; Li Xu; Change Zhang; Xuejun Wang; Q. Ping Dou; Jinbao Liu

L-carnitine (LC) is generally believed to transport long-chain acyl groups from fatty acids into the mitochondrial matrix for ATP generation via the citric acid cycle. Based on Warburgs theory that most cancer cells mainly depend on glycolysis for ATP generation, we hypothesize that, LC treatment would lead to disturbance of cellular metabolism and cytotoxicity in cancer cells. In this study, Human hepatoma HepG2, SMMC-7721 cell lines, primary cultured thymocytes and mice bearing HepG2 tumor were used. ATP content was detected by HPLC assay. Cell cycle, cell death and cell viability were assayed by flow cytometry and MTS respectively. Gene, mRNA expression and protein level were detected by gene microarray, Real-time PCR and Western blot respectively. HDAC activities and histone acetylation were detected both in test tube and in cultured cells. A molecular docking study was carried out with CDOCKER protocol of Discovery Studio 2.0 to predict the molecular interaction between L-carnitine and HDAC. Here we found that (1) LC treatment selectively inhibited cancer cell growth in vivo and in vitro; (2) LC treatment selectively induces the expression of p21cip1 gene, mRNA and protein in cancer cells but not p27kip1; (4) LC increases histone acetylation and induces accumulation of acetylated histones both in normal thymocytes and cancer cells; (5) LC directly inhibits HDAC I/II activities via binding to the active sites of HDAC and induces histone acetylation and lysine-acetylation accumulation in vitro; (6) LC treatment induces accumulation of acetylated histones in chromatin associated with the p21cip1 gene but not p27kip1 detected by ChIP assay. These data support that LC, besides transporting acyl group, works as an endogenous HDAC inhibitor in the cell, which would be of physiological and pathological importance.


Cancer Letters | 2011

Gambogic acid enhances proteasome inhibitor-induced anticancer activity

Hongbiao Huang; Di Chen; Shujue Li; Xiaofen Li; Ningning Liu; Xiaoyu Lu; Shouting Liu; Kai Zhao; Canguo Zhao; Haiping Guo; Changshan Yang; Ping Zhou; Xiaoxian Dong; Change Zhang; Guanmei; Q. Ping Dou; Jinbao Liu

Proteasome inhibition has emerged as a novel approach to anticancer therapy. Numerous natural compounds, such as gambogic acid, have been tested in vitro and in vivo as anticancer agents for cancer prevention and therapy. However, whether gambogic acid has chemosensitizing properties when combined with proteasome inhibitors in the treatment of malignant cells is still unknown. In an effort to investigate this effect, human leukemia K562 cells, mouse hepatocarcinoma H22 cells and H22 cell allografts were treated with gambogic acid, a proteasome inhibitor (MG132 or MG262) or the combination of both, followed by measurement of cellular viability, apoptosis induction and tumor growth inhibition. We report, for the first time, that: (i) the combination of natural product gambogic acid and the proteasome inhibitor MG132 or MG262 results in a synergistic inhibitory effect on growth of malignant cells and tumors in allograft animal models and (ii) there was no apparent systemic toxicity observed in the animals treated with the combination. Therefore, the findings presented in this study demonstrate that natural product gambogic acid is a valuable candidate to be used in combination with proteasome inhibitors, thus representing a compelling anticancer strategy.


Scientific Reports | 2015

A novel proteasome inhibitor suppresses tumor growth via targeting both 19S proteasome deubiquitinases and 20S proteolytic peptidases

Ningning Liu; Chunjiao Liu; Xiaofen Li; Siyan Liao; Wenbin Song; Changshan Yang; Chong Zhao; Hongbiao Huang; Lixia Guan; Peiquan Zhang; Shouting Liu; Xianliang Hua; Xin-Xin Chen; Ping Zhou; Xiaoying Lan; Songgang Yi; Shunqing Wang; Xuejun Wang; Q. Ping Dou; Jinbao Liu

The successful development of bortezomib-based therapy for treatment of multiple myeloma has established proteasome inhibition as an effective therapeutic strategy, and both 20S proteasome peptidases and 19S deubiquitinases (DUBs) are becoming attractive targets of cancer therapy. It has been reported that metal complexes, such as copper complexes, inhibit tumor proteasome. However, the involved mechanism of action has not been fully characterized. Here we report that (i) copper pyrithione (CuPT), an alternative to tributyltin for antifouling paint biocides, inhibits the ubiquitin-proteasome system (UPS) via targeting both 19S proteasome-specific DUBs and 20S proteolytic peptidases with a mechanism distinct from that of the FDA-approved proteasome inhibitor bortezomib; (ii) CuPT potently inhibits proteasome-specific UCHL5 and USP14 activities; (iii) CuPT inhibits tumor growth in vivo and induces cytotoxicity in vitro and ex vivo. This study uncovers a novel class of dual inhibitors of DUBs and proteasome and suggests a potential clinical strategy for cancer therapy.


Toxicology Letters | 2014

Anacardic acid induces cell apoptosis associated with induction of ATF4-dependent endoplasmic reticulum stress.

Hongbiao Huang; Xianliang Hua; Ningning Liu; Xiaofen Li; Shouting Liu; Xin Chen; Chong Zhao; Xiaoying Lan; Changshan Yang; Q. Ping Dou; Jinbao Liu

Anacardic acid (6-pentadecylsalicylic acid, AA), a natural compound isolated from the traditional medicine Amphipterygium adstringens, has been reported to possess antitumor activities. However, its molecular targets have not been thoroughly studied. Here, we report that AA is a potent inducer of endoplasmic reticulum (ER) stress, leading to apoptosis in hepatoma HepG2 and myeloma U266 cells. Induction of ER stress by AA was supported by a dose- and time-dependent increase in expression of the ER signaling downstream molecules, such as GRP78/BiP, phosphorylated eIF2α, ATF4 and CHOP in both HepG2 and U266 cell lines. Blockage of ATF4 expression by siRNA partially inhibited, while knockdown of CHOP expression by siRNA slightly increased AA-induced cell death in these cells. In addition, AA suppressed HepG2 xenograft tumor growth, associated with increased ER stress in vivo. These results suggest that AA induces tumor cell apoptosis associated with ATF4-dependent ER stress.


PLOS ONE | 2012

HDAC inhibitor L-carnitine and proteasome inhibitor bortezomib synergistically exert anti-tumor activity in vitro and in vivo.

Hongbiao Huang; Ningning Liu; Changshan Yang; Siyan Liao; Haiping Guo; Kai Zhao; Xiaofen Li; Shouting Liu; Lixia Guan; Chunjiao Liu; Li Xu; Change Zhang; Wenbin Song; Bing Li; Ping Tang; Q. Ping Dou; Jinbao Liu

Combinations of proteasome inhibitors and histone deacetylases (HDAC) inhibitors appear to be the most potent to produce synergistic cytotoxicity in preclinical trials. We have recently confirmed that L-carnitine (LC) is an endogenous HDAC inhibitor. In the current study, the anti-tumor effect of LC plus proteasome inhibitor bortezomib (velcade, Vel) was investigated both in cultured hepatoma cancer cells and in Balb/c mice bearing HepG2 tumor. Cell death and cell viability were assayed by flow cytometry and MTS, respectively. Gene, mRNA expression and protein levels were detected by gene microarray, quantitative real-time PCR and Western blot, respectively. The effect of Vel on the acetylation of histone H3 associated with the p21cip1 gene promoter was examined by using ChIP assay and proteasome peptidase activity was detected by cell-based chymotrypsin-like (CT-like) activity assay. Here we report that (i) the combination of LC and Vel synergistically induces cytotoxicity in vitro; (ii) the combination also synergistically inhibits tumor growth in vivo; (iii) two major pathways are involved in the synergistical effects of the combinational treatment: increased p21cip1 expression and histone acetylation in vitro and in vivo and enhanced Vel-induced proteasome inhibition by LC. The synergistic effect of LC and Vel in cancer therapy should have great potential in the future clinical trials.


Toxicology Letters | 2014

The combination of proteasome inhibitors bortezomib and gambogic acid triggers synergistic cytotoxicity in vitro but not in vivo.

Ningning Liu; Hongbiao Huang; Li Xu; Xianliang Hua; Xiaofen Li; Shouting Liu; Changshan Yang; Canguo Zhao; Chong Zhao; Shujue Li; Q. Ping Dou; Jinbao Liu

The proteasome inhibitor-based combinational therapy has been reported to be an efficient cancer treatment. Our recent studies demonstrated that the natural compound gambogic acid (GA) is a tissue-specific proteasome inhibitor, comparable to bortezomib (Bor), and sensitizes malignant cells to the proteasome inhibitor MG132/MG262 both in vitro and in vivo. The aim of this study was to further extend our investigation by combining GA with the clinically used proteasome inhibitor Bor to test their combined efficacy against human hepatoma HepG2 and mouse hepatoma H22 cells. GA and Bor synergistically induced cytotoxicity and cell death in human HepG2 and mouse H22 cells, and accelerated proteasome inhibition, endoplasmic reticulum (ER) stress and caspase activation in HepG2 cancer cells. However, unexpectedly, GA did not enhance or even antagonized Bor-induced tumor growth inhibition in H22 allograft and HepG2 xenograft tumor models. These findings demonstrated that GA increased Bor activity in vitro but limited the efficacy of Bor in vivo. We suggest that the combination of GA and Bor be avoided when administering these drugs to patients.


Scientific Reports | 2015

Gambogic acid induces apoptosis in diffuse large B-cell lymphoma cells via inducing proteasome inhibition

Xianping Shi; Xiaoying Lan; Xin Chen; Chong Zhao; Xiaofen Li; Shouting Liu; Hongbiao Huang; Ningning Liu; Dan Zang; Yuning Liao; Peiquan Zhang; Xuejun Wang; Jinbao Liu

Resistance to chemotherapy is a great challenge to improving the survival of patients with diffuse large B-cell lymphoma (DLBCL), especially those with activated B-cell-like DLBCL (ABC-DLBCL). Therefore it is urgent to search for novel agents for the treatment of DLBCL. Gambogic acid (GA), a small molecule derived from Chinese herb gamboges, has been approved for Phase II clinical trial for cancer therapy by Chinese FDA. In the present study, we investigated the effect of GA on cell survival and apoptosis in DLBCL cells including both GCB- and ABC-DLBCL cells. We found that GA induced growth inhibition and apoptosis of both GCB- and ABC-DLBCL cells in vitro and in vivo, which is associated with proteasome malfunction. These findings provide significant pre-clinical evidence for potential usage of GA in DLBCL therapy particularly in ABC-DLBCL treatment.


Toxicology in Vitro | 2014

Calcium channel blocker verapamil accelerates gambogic acid-induced cytotoxicity via enhancing proteasome inhibition and ROS generation.

Ningning Liu; Hongbiao Huang; Shouting Liu; Xiaofen Li; Changshan Yang; Q. Ping Dou; Jinbao Liu

Verapamil (Ver), an inhibitor of the multidrug resistance gene product, has been proved to be a promising combination partner with other anti-cancer agents including proteasome inhibitor bortezomib. Gambogic acid (GA) has been approved for Phase II clinical trials in cancer therapy in China. We have most recently reported that GA is a potent proteasome inhibitor, with anticancer efficiency comparable to bortezomib but much less toxicity. In the current study we investigated whether Ver can enhance the cytotoxicity of GA. We report that (i) the combination of Ver and GA results in synergistic cytotoxic effect and cell death induction in HepG2 and K562 cancer cell lines; (ii) a combinational treatment with Ver and GA induces caspase activation, endoplasmic reticulum (ER) stress and reactive oxygen species (ROS) production; (iii) caspase inhibitor z-VAD blocks GA+Ver-induced apoptosis but not proteasome inhibition; (iv) cysteine-containing compound N-acetylcysteine (NAC) prevents GA+Ver-induced poly(ADP-ribose) polymerase cleavage and proteasome inhibition. These results demonstrate that Ver accelerates GA-induced cytotoxicity via enhancing proteasome inhibition and ROS production. These findings indicate that the natural product GA is a valuable candidate that can be used in combination with Ver, thus representing a compelling anticancer strategy.

Collaboration


Dive into the Shouting Liu's collaboration.

Top Co-Authors

Avatar

Hongbiao Huang

Guangzhou Medical University

View shared research outputs
Top Co-Authors

Avatar

Jinbao Liu

Guangzhou Medical University

View shared research outputs
Top Co-Authors

Avatar

Ningning Liu

Guangzhou Medical University

View shared research outputs
Top Co-Authors

Avatar

Xiaofen Li

Guangzhou Medical University

View shared research outputs
Top Co-Authors

Avatar

Changshan Yang

Guangzhou Medical University

View shared research outputs
Top Co-Authors

Avatar

Xuejun Wang

University of South Dakota

View shared research outputs
Top Co-Authors

Avatar

Q. Ping Dou

Wayne State University

View shared research outputs
Top Co-Authors

Avatar

Chong Zhao

Guangzhou Medical University

View shared research outputs
Top Co-Authors

Avatar

Canguo Zhao

Guangzhou Medical University

View shared research outputs
Top Co-Authors

Avatar

Shujue Li

Guangzhou Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge