Shresh Pathak
Bose Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shresh Pathak.
Journal of Biological Chemistry | 2007
Sanchita Basu; Sushil Kumar Pathak; Anirban Banerjee; Shresh Pathak; Asima Bhattacharyya; Zhenhua Yang; Sarah Talarico; Manikuntala Kundu; Joyoti Basu
Combating tuberculosis requires a detailed understanding of how mycobacterial effectors modulate the host immune response. The role of the multigene PE family of proteins unique to mycobacteria in the pathogenesis of tuberculosis is still poorly understood, although certain PE_PGRS genes have been linked to virulence. Tumor necrosis factor-α (TNF-α) is essential for successfully combating tuberculosis. In this study we provide evidence that PE_PGRS33, a surface exposed protein, elicits TNF-α release from macrophages in a TLR2 (Toll-like receptor 2)-dependent manner. ASK1 (apoptosis signal-regulating kinase 1) is activated downstream of TLR2. ASK1 activates the MAPKs p38 and JNK. PE_PGRS33-induced signaling leads to enhanced expression of TNF-α and TNF receptor I (TNFRI) genes. Mycobacterium smegmatis expressing PE_ PGRS33 elicits the same effects as purified PE_PGRS33. TNF-α release occurs even when internalization of the bacteria is blocked by cytochalasin D, suggesting that interaction of PE_ PGRS33 with TLR2 is sufficient to trigger the effects described. Release of TNF-α plays the determining role in triggering apoptosis in macrophages challenged with PE_PGRS33. The death receptor-dependent signals are amplified through classical caspase 8-dependent mitochondrial release of cytochrome c, leading to the activation of caspases 9 and 3. An important aspect of our findings is that deletions within the PGRS domain (simulating those occurring in clinical strains) attenuate the TNF-α-inducing ability of PE_PGRS33. These results provide the first evidence that variations in the polymorphic repeats of the PGRS domain modulate the innate immune response.
Journal of Biological Chemistry | 2003
Debabrata Mandal; Veronique Baudin-Creuza; Asima Bhattacharyya; Shresh Pathak; Jean Delaunay; Manikuntala Kundu; Joyoti Basu
The N-terminal cytoplasmic domain of the anion exchanger 1 (AE1 or band 3) of the human erythrocyte associates with peripheral membrane proteins to regulate membrane-cytoskeleton interactions, with glycolytic enzymes such as glyceraldehyde-3-phosphate dehydrogenase and aldolase, with the protein-tyrosine kinase p72syk, with hemoglobin and with hemichromes. We have demonstrated that the N-terminal cytoplasmic domain of band 3 (CDB3) is a substrate of the apoptosis executioner caspase 3 (1). CDB3 has two non-conventional caspase 3 cleavage sites, TATD45 and EQGD205 (2). In vitro treatment of recombinant CDB3 with caspase 3 generated two fragments, which could be blocked by pretreatment with the caspase 3 inhibitor Z-DEVD-fmk (3). Recombinant CDB3 in which the caspase 3 cleavage sites Asp45 and Asp205 were mutated, was resistant to proteolysis (4). Proteolytically derived fragments crossreactive with polyclonal anti-band 3 antibody appeared with simultaneous cleavage of poly (ADP-ribose) polymerase and procaspase 3 in staurosporine (STS)-treated HEK293 cells transiently transfected with CDB3 (5). In vivo cleavage of CDB3 could be blocked by pretreatment of cells with Z-DEVD-fmk or in cells transfected with mutant CDB3 (D45A, D205A) (6). Co-transfection experiments showed that STS-mediated cleavage of CDB3 diminished its interaction with the N-terminal domain of protein 4.2, confirming that such cleavage interferes with the interaction of CDB3 with cytoskeletal proteins (7). Active caspase 3 was observed in aged red cells but not in young cells. This red cell caspase 3 could cleave band 3 present in inside-out vesicles prepared from young erythrocytes arguing in favor of a physiological role of caspase 3 in aged erythrocytes.
Journal of Biological Chemistry | 2005
Sushil Kumar Pathak; Sanchita Basu; Asima Bhattacharyya; Shresh Pathak; Manikuntala Kundu; Joyoti Basu
Mannose-capped lipoarabinomannans (Man-LAMs) are members of the repertoire of Mycobacterium tuberculosis modulins that the bacillus uses to subvert the host innate immune response. Interleukin-12 (IL-12) production is critical for mounting an effective immune response by the host against M. tuberculosis. We demonstrate that Man-LAM inhibits IL-12 p40 production mediated by subsequent challenge with lipopolysaccharide (LPS). Man-LAM inhibits LPS-induced IL-12 p40 expression in an IL-10-independent manner. It attenuates LPS-induced NF-κB-driven luciferase gene expression, suggesting that its effects are likely directly related to inhibition of NF-κB. This is probably because of dampening of the Toll-like receptor signaling. Man-LAM inhibits IL-1 receptor-associated kinase (IRAK)-TRAF6 interaction as well as IκB-α phosphorylation. It directly attenuates nuclear translocation and DNA binding of c-Rel and p50. Man-LAM exerts these effects by inducing the expression of Irak-M, a negative regulator of TLR signaling. Knockdown of Irak-M expression by RNA interference reinstates LPS-induced IL-12 production in Man-LAM-pretreated cells. The fact that Irak-M expression could be elicited by yeast mannan suggested that ligation of the mannose receptor by the mannooligosaccharide caps of LAM was the probable trigger for IRAK-M induction.
Biochemical Journal | 2002
Asima Bhattacharyya; Shresh Pathak; Simanti Datta; Santanu Chattopadhyay; Joyoti Basu; Manikuntala Kundu
Gastric infection, as well as inflammation, caused by Helicobacter pylori, activates the production of cytokines and chemokines by mononuclear cells; interleukin-8 (IL-8) is one of the major inflammatory chemokines. Since H. pylori does not invade mucosal tissue, we observed the effect of the water extract of H. pylori (HPE), containing shed factors, on the production of IL-8 by human peripheral blood monocytes and the human monocyte cell line THP-1. HPE-treatment induced activation of the mitogen-activated protein kinases (MAPKs) ERK (extracellular signal-regulated kinase), p38 and JNK (c-Jun N-terminal kinase), an effect which was not dependent on the presence of the cag pathogenicity island. p38 MAPK activation was sustained. The specific inhibitors, U0126 (for ERK1/2 signalling) and SB203580 (for p38 MAPK signalling), both abrogated IL-8 secretion from HPE-treated THP-1. Dominant-negative mutants of the upstream kinases MEK1 (MAPK/ERK kinase 1), MKK (MAPK kinase) 6 and MKK7 also inhibited IL-8 secretion, pointing to a role of all three MAPKs in HPE-mediated IL-8 release. The inhibitory effects of polymyxin B and anti-CD14 antibody suggested that the effect of HPE on MAPKs was mediated by H. pylori lipopolysaccharide (LPS). By analysis of IL-8-promoter-driven luciferase gene expression, we observed that the effects of HPE-induced nuclear factor-kappaB (NF-kappaB) activation and MAPK signalling were mediated at the level of the IL-8 promoter. While ERK1/2 activation could be linked to enhanced DNA binding of activator protein-1 (AP-1), p38 MAPK signalling did not affect AP-1 DNA binding. Taken together, these results provide the first evidence that LPS from H. pylori stimulates IL-8 release from cells of the monocytic lineage through activation of NF-kappaB and signalling along MAPK cascades. The stimulation of MAPK signalling in macrophages by LPS of H. pylori amplifies the inflammatory response associated with gastric H. pylori infection and needs to be taken into consideration when developing therapeutics based on these signalling pathways.
Journal of Immunology | 2006
Sushil Kumar Pathak; Sanchita Basu; Asima Bhattacharyya; Shresh Pathak; Anirban Banerjee; Joyoti Basu; Manikuntala Kundu
Helicobacter pylori infection is associated with the local production of chemokines and cytokines, of which IL-6 is overexpressed at the margin of gastric ulcer in H. pylori-positive gastritis. Cells of the monocytic lineage are the major sources of IL-6, and mononuclear cell infiltration in the lamina propria is characteristic of H. pylori-induced chronic infection. Our study shows for the first time that a secreted peptidyl prolyl cis-, trans-isomerase, HP0175 elicits IL-6 gene expression and IL-6 release from macrophages. An isogenic strain inactivated in the HP0175 gene (knockout) was attenuated in its IL-6-inducing ability, which was restored after complementation with the HP0175 gene. The specificity of the HP0175-induced effect was confirmed by the fact that rHP0175 purified from HEK293 cells could also induce IL-6 release, ruling out the possibility that the observed effect was due to bacterial contaminants. HP0175 was capable of interacting directly with the extracellular domain of TLR4. HP0175-induced IL-6 gene expression was critically dependent on TLR4-dependent NF-κB and MAPK activation. TLR4/PI3K-dependent ERK1/2 and p38 MAPK signaling converged upon activation of mitogen- and stress-activated protein kinase 1 (MSK1). The central role of MSK1 was borne out by the fact that silencing of MSK1 expression abrogated HP0175-mediated NF-κB-dependent IL-6 gene transcription. MSK1 regulated the recruitment of p65 and phopho-Ser10-histone H3 to the IL-6 promoter. HP0175 therefore regulated IL-6 gene transcription through chromatin modification at the IL-6 promoter.
Journal of Immunology | 2005
Chaitali Basak; Sushil Kumar Pathak; Asima Bhattacharyya; Shresh Pathak; Joyoti Basu; Manikuntala Kundu
Apoptosis contributes to the pathology of gastric epithelial cell damage that characterizes Helicobacter pylori infection. The secreted peptidyl prolyl cis, trans-isomerase of H. pylori, HP0175 executed apoptosis of the gastric epithelial cell line AGS in a dose- and time-dependent manner. The effect of HP0175 was confirmed by generating an isogenic mutant of H. pylori disrupted in the HP0175 gene. The apoptosis-inducing ability of this mutant was impaired compared with that of the wild type. The effect of HP0175 was mediated through TLR4. Preincubation of the gastric epithelial cell line AGS with anti-TLR4 mAb inhibited apoptosis induced by HP0175. Downstream of TLR4, apoptosis signal-regulating kinase 1 activated MAPK p38, leading to the caspase 8-dependent cleavage of Bid, its translocation to the mitochondria, mitochondrial pore formation, cytochrome c release, and activation of caspases 9 and 3. We show for the first time that a secreted bacterial Ag with peptidyl prolyl cis,trans-isomerase activity signals through TLR4, and that this Ag executes gastric epithelial cell apoptosis through a signaling pathway in which TLR4 and apoptosis signal-regulating kinase 1 are central players.
Journal of Biological Chemistry | 2004
Sushil Kumar Pathak; Asima Bhattacharyya; Shresh Pathak; Chaitali Basak; Debabrata Mandal; Manikuntala Kundu; Joyoti Basu
Understanding how pathogenic mycobacteria subvert the protective immune response is crucial to the development of strategies aimed at controlling mycobacterial infections. Prostaglandin E2 exerts an immunosuppressive function in the context of mycobacterial infection. Because cyclooxygenase-2 (COX-2) is a rate-limiting enzyme in prostaglandin biosynthesis, there is a need to delineate the mechanisms through which pathogenic mycobacteria regulate COX-2 expression in macrophages. Our studies demonstrate that the NF-κB and CRE elements of the COX-2 promoter are critical to Mycobacterium avium-induced COX-2 gene expression. M. avium-triggered signaling originates at the Toll-like receptor 2 (TLR2). Ras associates with TLR2 and activates the mitogen-activated protein kinase (MAPK) extracellular signal-regulated kinase (ERK), whereas tumor necrosis factor receptor-associated factor 6 (TRAF6)/transforming growth factor β-activated kinase 1 (TAK1)-dependent signaling activates p38 MAPK. Both ERK and p38 MAPK activation converge to regulate the activation of mitogen- and stress-activated kinase 1 (MSK1). MSK1 mediates the phosphorylation of the transcription factor CREB accounting for its stimulatory effect on CRE-dependent gene expression. M. avium-triggered cytoplasmic NF-κB activation following IκB phosphorylation is necessary but not sufficient for COX-2 promoter-driven gene expression. MSK1 activation is also essential for M. avium-triggered NF-κB-dependent gene expression, presumably mediating nucleosomal modifications. These studies demonstrate that the nuclear kinase MSK1 is necessary in regulating the pathogen-driven expression of a gene by controlling two transcription factors. The attenuation of MSK1 may therefore have potential benefit in restricting survival of pathogenic mycobacteria in macrophages.
Nature Immunology | 2009
Manikuntala Kundu; Sushil Kumar Pathak; Kuldeep Kumawat; Sanchita Basu; Gargi Chatterjee; Shresh Pathak; Takuya Noguchi; Kohsuke Takeda; Hidenori Ichijo; Christine B.F. Thien; Wallace Y. Langdon; Joyoti Basu
Apoptosis is central to the interaction between pathogenic mycobacteria and host macrophages. Caspase-8-dependent apoptosis of infected macrophages, which requires activation of the mitogen-activated protein (MAP) kinase p38, lowers the spread of mycobacteria. Here we establish a link between the release of tumor necrosis factor (TNF) and mycobacteria-mediated macrophage apoptosis. TNF activated a pathway involving the kinases ASK1, p38 and c-Abl. This pathway led to phosphorylation of FLIPS, which facilitated its interaction with the E3 ubiquitin ligase c-Cbl. This interaction triggered proteasomal degradation of FLIPS, which promoted activation of caspase-8 and apoptosis. Our findings identify a previously unappreciated signaling pathway needed for Mycobacterium tuberculosis–triggered macrophage cell death.
Journal of Biological Chemistry | 2008
Sanchita Basu; Sushil Kumar Pathak; Gargi Chatterjee; Shresh Pathak; Joyoti Basu; Manikuntala Kundu
The pathophysiology of Helicobacter pylori-associated gastroduodenal diseases, ulcerogenesis, and carcinogenesis is intimately linked to activation of epidermal growth factor receptor (EGFR) and production of vascular endothelial growth factor (VEGF). Extracellular virulence factors, such as CagA and VacA, have been proposed to regulate EGFR activation and VEGF production in gastric epithelial cells. We demonstrate that the H. pylori secretory protein, HP0175, by virtue of its ability to bind TLR4, transactivates EGFR and stimulates EGFR-dependent VEGF production in the gastric cancer cell line AGS. Knock-out of the hp0175 gene attenuates the ability of the resultant H. pylori strain to activate EGFR or to induce VEGF production. HP0175-induced activation of EGFR is preceded by translocation of TLR4 into lipid rafts. In lipid rafts, the Src kinase family member Lyn interacts with TLR4, leading to tyrosine phosphorylation of TLR4. Knockdown of Lyn prevents HP0175-induced activation of EGFR and VEGF production. Tyrosine-phosphorylated TLR4 interacts with EGFR. This interaction is necessary for the activation of EGFR. Disruption of lipid rafts with methyl β-cyclodextrin prevents HP0175-induced tyrosine phosphorylation of TLR4 and activation of EGFR. This mechanism of transactivation of EGFR is novel and distinct from that of metalloprotease-dependent shedding of EGF-like ligands, leading to autocrine activation of EGFR. It provides new insight into our understanding of the receptor cross-talk network.
Journal of Clinical Investigation | 2014
Andrea Vambutas; Martin Lesser; Virginia Mullooly; Shresh Pathak; Gerald D. Zahtz; Lisa Rosen; Elliot Goldofsky
BACKGROUND Autoimmune inner ear disease (AIED) is a rare disease that results in progressive sensorineural hearing loss. Patients with AIED initially respond to corticosteroids; however, many patients become unresponsive to this treatment over time, and there is no effective alternative therapy for these individuals. METHODS We performed a phase I/II open-label, single-arm clinical trial of the IL-1 receptor antagonist anakinra in corticosteroid-resistant AIED patients. Given that the etiology of corticosteroid resistance is likely heterogeneous, we used a Simon 2-stage design to distinguish between an unacceptable (≤10%) and an acceptable (≥30%) response rate to anakinra therapy. Subjects received 100 mg anakinra by subcutaneous injection for 84 days, followed by a 180-day observational period. RESULTS Based on patient responses, the Simon 2-stage rule permitted premature termination of the trial after 10 subjects completed the 84-day drug period, as the target efficacy for the entire trial had been achieved. Of these 10 patients, 7 demonstrated audiometric improvement, as assessed by pure tone average (PTA) and word recognition score (WRS). In these 7 responders, reduced IL-1β plasma levels correlated with clinical response. Upon discontinuation of treatment, 3 subjects relapsed, which correlated with increased IL-1β plasma levels. CONCLUSION We demonstrated that IL-1β inhibition in corticosteroid-resistant AIED patients was effective in a small cohort of patients and that IL-1β plasma levels associated with both clinical hearing response and disease relapse. These results suggest that a larger phase II randomized clinical trial of IL-1β inhibition is warranted. TRIAL REGISTRATION ClinicalTrials.gov NCT01267994. FUNDING NIH, Merrill & Phoebe Goodman Otology Research Center, and Long Island Hearing & Speech Society.