Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shrikant Mane is active.

Publication


Featured researches published by Shrikant Mane.


Nature | 2012

De novo mutations revealed by whole-exome sequencing are strongly associated with autism

Stephan J. Sanders; Abha R. Gupta; John D. Murdoch; Melanie J. Raubeson; A. Jeremy Willsey; A. Gulhan Ercan-Sencicek; Nicholas M. DiLullo; Neelroop N. Parikshak; Jason L. Stein; Michael F. Walker; Gordon T. Ober; Nicole A. Teran; Youeun Song; Paul El-Fishawy; Ryan C. Murtha; Murim Choi; John D. Overton; Robert D. Bjornson; Nicholas Carriero; Kyle A. Meyer; Kaya Bilguvar; Shrikant Mane; Nenad Sestan; Richard P. Lifton; Murat Gunel; Kathryn Roeder; Daniel H. Geschwind; Bernie Devlin; Matthew W. State

Multiple studies have confirmed the contribution of rare de novo copy number variations to the risk for autism spectrum disorders. But whereas de novo single nucleotide variants have been identified in affected individuals, their contribution to risk has yet to be clarified. Specifically, the frequency and distribution of these mutations have not been well characterized in matched unaffected controls, and such data are vital to the interpretation of de novo coding mutations observed in probands. Here we show, using whole-exome sequencing of 928 individuals, including 200 phenotypically discordant sibling pairs, that highly disruptive (nonsense and splice-site) de novo mutations in brain-expressed genes are associated with autism spectrum disorders and carry large effects. On the basis of mutation rates in unaffected individuals, we demonstrate that multiple independent de novo single nucleotide variants in the same gene among unrelated probands reliably identifies risk alleles, providing a clear path forward for gene discovery. Among a total of 279 identified de novo coding mutations, there is a single instance in probands, and none in siblings, in which two independent nonsense variants disrupt the same gene, SCN2A (sodium channel, voltage-gated, type II, α subunit), a result that is highly unlikely by chance.


Nature | 2010

Whole-exome sequencing identifies recessive WDR62 mutations in severe brain malformations

Kaya Bilguvar; Ali K. Ozturk; Angeliki Louvi; Kenneth Y. Kwan; Murim Choi; Burak Tatlı; Dilek Yalnizoglu; Beyhan Tüysüz; Ahmet Okay Caglayan; Sarenur Gokben; Hande Kaymakçalan; Tanyeri Barak; Mehmet Bakırcıoğlu; Katsuhito Yasuno; Winson S.C. Ho; Stephan J. Sanders; Ying Zhu; Sanem Yilmaz; Alp Dinçer; Michele H. Johnson; Richard A. Bronen; Naci Kocer; Hüseyin Per; Shrikant Mane; Mehmet Necmettin Pamir; Cengiz Yalcinkaya; Meral Topçu; Meral Özmen; Nenad Sestan; Richard P. Lifton

The development of the human cerebral cortex is an orchestrated process involving the generation of neural progenitors in the periventricular germinal zones, cell proliferation characterized by symmetric and asymmetric mitoses, followed by migration of post-mitotic neurons to their final destinations in six highly ordered, functionally specialized layers. An understanding of the molecular mechanisms guiding these intricate processes is in its infancy, substantially driven by the discovery of rare mutations that cause malformations of cortical development. Mapping of disease loci in putative Mendelian forms of malformations of cortical development has been hindered by marked locus heterogeneity, small kindred sizes and diagnostic classifications that may not reflect molecular pathogenesis. Here we demonstrate the use of whole-exome sequencing to overcome these obstacles by identifying recessive mutations in WD repeat domain 62 (WDR62) as the cause of a wide spectrum of severe cerebral cortical malformations including microcephaly, pachygyria with cortical thickening as well as hypoplasia of the corpus callosum. Some patients with mutations in WDR62 had evidence of additional abnormalities including lissencephaly, schizencephaly, polymicrogyria and, in one instance, cerebellar hypoplasia, all traits traditionally regarded as distinct entities. In mice and humans, WDR62 transcripts and protein are enriched in neural progenitors within the ventricular and subventricular zones. Expression of WDR62 in the neocortex is transient, spanning the period of embryonic neurogenesis. Unlike other known microcephaly genes, WDR62 does not apparently associate with centrosomes and is predominantly nuclear in localization. These findings unify previously disparate aspects of cerebral cortical development and highlight the use of whole-exome sequencing to identify disease loci in settings in which traditional methods have proved challenging.


Nature | 2012

Mutations in Kelch-like 3 and Cullin 3 cause hypertension and electrolyte abnormalities

Lynn M. Boyden; Murim Choi; Keith A. Choate; Carol Nelson-Williams; Anita Farhi; Hakan R. Toka; Irina Tikhonova; Robert D. Bjornson; Shrikant Mane; Giacomo Colussi; Marcel Lebel; Richard D. Gordon; Ben A. Semmekrot; Alain Poujol; Matti Välimäki; Maria Elisabetta De Ferrari; Sami A. Sanjad; Michael Gutkin; Fiona E. Karet; Joseph R. Tucci; Jim R. Stockigt; Kim M. Keppler-Noreuil; Craig C. Porter; Sudhir K. Anand; Margo Whiteford; Ira Davis; Stephanie Dewar; Alberto Bettinelli; Jeffrey J. Fadrowski; Craig W. Belsha

Hypertension affects one billion people and is a principal reversible risk factor for cardiovascular disease. Pseudohypoaldosteronism type II (PHAII), a rare Mendelian syndrome featuring hypertension, hyperkalaemia and metabolic acidosis, has revealed previously unrecognized physiology orchestrating the balance between renal salt reabsorption and K+ and H+ excretion. Here we used exome sequencing to identify mutations in kelch-like 3 (KLHL3) or cullin 3 (CUL3) in PHAII patients from 41 unrelated families. KLHL3 mutations are either recessive or dominant, whereas CUL3 mutations are dominant and predominantly de novo. CUL3 and BTB-domain-containing kelch proteins such as KLHL3 are components of cullin–RING E3 ligase complexes that ubiquitinate substrates bound to kelch propeller domains. Dominant KLHL3 mutations are clustered in short segments within the kelch propeller and BTB domains implicated in substrate and cullin binding, respectively. Diverse CUL3 mutations all result in skipping of exon 9, producing an in-frame deletion. Because dominant KLHL3 and CUL3 mutations both phenocopy recessive loss-of-function KLHL3 mutations, they may abrogate ubiquitination of KLHL3 substrates. Disease features are reversed by thiazide diuretics, which inhibit the Na–Cl cotransporter in the distal nephron of the kidney; KLHL3 and CUL3 are expressed in this location, suggesting a mechanistic link between KLHL3 and CUL3 mutations, increased Na–Cl reabsorption, and disease pathogenesis. These findings demonstrate the utility of exome sequencing in disease gene identification despite the combined complexities of locus heterogeneity, mixed models of transmission and frequent de novo mutation, and establish a fundamental role for KLHL3 and CUL3 in blood pressure, K+ and pH homeostasis.


Molecular Autism | 2012

Common genetic variants, acting additively, are a major source of risk for autism.

Lambertus Klei; Stephan J. Sanders; Vanessa Hus; Jennifer K. Lowe; A. Jeremy Willsey; Daniel Moreno-De-Luca; Eric Fombonne; Daniel H. Geschwind; Dorothy E. Grice; David H. Ledbetter; Catherine Lord; Shrikant Mane; Christa Lese Martin; Donna M. Martin; Eric M. Morrow; Christopher A. Walsh; Nadine M. Melhem; Pauline Chaste; James S. Sutcliffe; Matthew W. State; Edwin H. Cook; Kathryn Roeder; Bernie Devlin

BackgroundAutism spectrum disorders (ASD) are early onset neurodevelopmental syndromes typified by impairments in reciprocal social interaction and communication, accompanied by restricted and repetitive behaviors. While rare and especially de novo genetic variation are known to affect liability, whether common genetic polymorphism plays a substantial role is an open question and the relative contribution of genes and environment is contentious. It is probable that the relative contributions of rare and common variation, as well as environment, differs between ASD families having only a single affected individual (simplex) versus multiplex families who have two or more affected individuals.MethodsBy using quantitative genetics techniques and the contrast of ASD subjects to controls, we estimate what portion of liability can be explained by additive genetic effects, known as narrow-sense heritability. We evaluate relatives of ASD subjects using the same methods to evaluate the assumptions of the additive model and partition families by simplex/multiplex status to determine how heritability changes with status.ResultsBy analyzing common variation throughout the genome, we show that common genetic polymorphism exerts substantial additive genetic effects on ASD liability and that simplex/multiplex family status has an impact on the identified composition of that risk. As a fraction of the total variation in liability, the estimated narrow-sense heritability exceeds 60% for ASD individuals from multiplex families and is approximately 40% for simplex families. By analyzing parents, unaffected siblings and alleles not transmitted from parents to their affected children, we conclude that the data for simplex ASD families follow the expectation for additive models closely. The data from multiplex families deviate somewhat from an additive model, possibly due to parental assortative mating.ConclusionsOur results, when viewed in the context of results from genome-wide association studies, demonstrate that a myriad of common variants of very small effect impacts ASD liability.


Nature Genetics | 2010

Genome-wide association study of intracranial aneurysm identifies three new risk loci

Katsuhito Yasuno; Kaya Bilguvar; Philippe Bijlenga; Siew Kee Low; Boris Krischek; Georg Auburger; Matthias Simon; Dietmar Krex; Zulfikar Arlier; Nikhil R. Nayak; Ynte M. Ruigrok; Mika Niemelä; Atsushi Tajima; Mikael von und zu Fraunberg; Tamás Dóczi; Florentina Wirjatijasa; Akira Hata; Jordi Blasco; Ági Oszvald; Hidetoshi Kasuya; Gulam Zilani; Beate Schoch; Pankaj Singh; Carsten Stüer; Roelof Risselada; Jürgen Beck; Teresa Sola; Filomena Ricciardi; Arpo Aromaa; Thomas Illig

Saccular intracranial aneurysms are balloon-like dilations of the intracranial arterial wall; their hemorrhage commonly results in severe neurologic impairment and death. We report a second genome-wide association study with discovery and replication cohorts from Europe and Japan comprising 5,891 cases and 14,181 controls with ∼832,000 genotyped and imputed SNPs across discovery cohorts. We identified three new loci showing strong evidence for association with intracranial aneurysms in the combined dataset, including intervals near RBBP8 on 18q11.2 (odds ratio (OR) = 1.22, P = 1.1 × 10−12), STARD13-KL on 13q13.1 (OR = 1.20, P = 2.5 × 10−9) and a gene-rich region on 10q24.32 (OR = 1.29, P = 1.2 × 10−9). We also confirmed prior associations near SOX17 (8q11.23–q12.1; OR = 1.28, P = 1.3 × 10−12) and CDKN2A-CDKN2B (9p21.3; OR = 1.31, P = 1.5 × 10−22). It is noteworthy that several putative risk genes play a role in cell-cycle progression, potentially affecting the proliferation and senescence of progenitor-cell populations that are responsible for vascular formation and repair.


Nature Genetics | 2008

Susceptibility loci for intracranial aneurysm in European and Japanese populations

Kaya Bilguvar; Katsuhito Yasuno; Mika Niemelä; Ynte M. Ruigrok; Mikael von und zu Fraunberg; Cornelia M. van Duijn; Leonard H. van den Berg; Shrikant Mane; Christopher E. Mason; Murim Choi; Emília Ilona Gaál; Yasar Bayri; Luis Kolb; Zulfikar Arlier; Sudhakar Ravuri; Antti Ronkainen; Atsushi Tajima; Aki Laakso; Akira Hata; Hidetoshi Kasuya; Timo Koivisto; Jaakko Rinne; Juha Öhman; Monique M.B. Breteler; Cisca Wijmenga; Matthew W. State; Gabriel J.E. Rinkel; Juha Hernesniemi; Juha E. Jääskeläinen; Aarno Palotie

Stroke is the worlds third leading cause of death. One cause of stroke, intracranial aneurysm, affects ∼2% of the population and accounts for 500,000 hemorrhagic strokes annually in mid-life (median age 50), most often resulting in death or severe neurological impairment. The pathogenesis of intracranial aneurysm is unknown, and because catastrophic hemorrhage is commonly the first sign of disease, early identification is essential. We carried out a multistage genome-wide association study (GWAS) of Finnish, Dutch and Japanese cohorts including over 2,100 intracranial aneurysm cases and 8,000 controls. Genome-wide genotyping of the European cohorts and replication studies in the Japanese cohort identified common SNPs on chromosomes 2q, 8q and 9p that show significant association with intracranial aneurysm with odds ratios 1.24–1.36. The loci on 2q and 8q are new, whereas the 9p locus was previously found to be associated with arterial diseases, including intracranial aneurysm. Associated SNPs on 8q likely act via SOX17, which is required for formation and maintenance of endothelial cells, suggesting a role in development and repair of the vasculature; CDKN2A at 9p may have a similar role. These findings have implications for the pathophysiology, diagnosis and therapy of intracranial aneurysm.


Biological Psychiatry | 2012

Rare copy number variants in tourette syndrome disrupt genes in histaminergic pathways and overlap with autism.

Thomas V. Fernandez; Stephan J. Sanders; Ilana R. Yurkiewicz; A. Gulhan Ercan-Sencicek; Young Shin Kim; Daniel O. Fishman; Melanie J. Raubeson; Youeun Song; Katsuhito Yasuno; Winson S.C. Ho; Kaya Bilguvar; Joseph T. Glessner; Su Hee Chu; James F. Leckman; Robert A. King; Donald L. Gilbert; Gary A. Heiman; Jay A. Tischfield; Pieter J. Hoekstra; Bernie Devlin; Hakon Hakonarson; Shrikant Mane; Murat Gunel; Matthew W. State

BACKGROUNDnStudies of copy number variation (CNV) have characterized loci and molecular pathways in a range of neuropsychiatric conditions. We analyzed rare CNVs in Tourette syndrome (TS) to identify novel risk regions and relevant pathways, to evaluate burden of structural variation in cases versus controls, and to assess overlap of identified variations with those in other neuropsychiatric syndromes.nnnMETHODSnWe conducted a case-control study of 460 individuals with TS, including 148 parent-child trios and 1131 controls. CNV analysis was undertaken using 370 K to 1 M probe arrays, and genotyping data were used to match cases and controls for ancestry. CNVs present in < 1% of the population were evaluated.nnnRESULTSnWhile there was no significant increase in the number of de novo or transmitted rare CNVs in cases versus controls, pathway analysis using multiple algorithms showed enrichment of genes within histamine receptor (subtypes 1 and 2) signaling pathways (p = 5.8 × 10(-4) - 1.6 × 10(-2)), as well as axon guidance, cell adhesion, nervous system development, and synaptic structure and function processes. Genes mapping within rare CNVs in TS showed significant overlap with those previously identified in autism spectrum disorders but not intellectual disability or schizophrenia. Three large, likely pathogenic, de novo events were identified, including one disrupting multiple gamma-aminobutyric acid receptor genes.nnnCONCLUSIONSnWe identify further evidence supporting recent findings regarding the involvement of histaminergic and gamma-aminobutyric acidergic mechanisms in the etiology of TS and show an overlap of rare CNVs in TS and autism spectrum disorders.


American Journal of Medical Genetics Part A | 2012

The Centers for Mendelian Genomics: A New Large-Scale Initiative to Identify the Genes Underlying Rare Mendelian Conditions

Michael J. Bamshad; Jay Shendure; David Valle; Ada Hamosh; James R. Lupski; Richard A. Gibbs; Eric Boerwinkle; Richard P. Lifton; Mark Gerstein; Murat Gunel; Shrikant Mane; Deborah A. Nickerson

Next generation exome sequencing (ES) and whole genome sequencing (WGS) are new powerful tools for discovering the gene(s) that underlie Mendelian disorders. To accelerate these discoveries, the National Institutes of Health has established three Centers for Mendelian Genomics (CMGs): the Center for Mendelian Genomics at the University of Washington; the Center for Mendelian Genomics at Yale University; and the Baylor–Johns Hopkins Center for Mendelian Genomics at Baylor College of Medicine and Johns Hopkins University. The CMGs will provide ES/WGS and extensive analysis expertise at no cost to collaborating investigators where the causal gene(s) for a Mendelian phenotype has yet to be uncovered. Over the next few years and in collaboration with the global human genetics community, the CMGs hope to facilitate the identification of the genes underlying a very large fraction of all Mendelian disorders; see http://mendelian.org.


Nature Genetics | 2011

Recessive LAMC3 mutations cause malformations of occipital cortical development

Tanyeri Barak; Kenneth Y. Kwan; Angeliki Louvi; Veysi Demirbilek; Serap Saygi; Beyhan Tüysüz; Murim Choi; Huseyin Boyaci; Katja Doerschner; Ying Zhu; Hande Kaymakçalan; Saliha Yılmaz; Mehmet Bakırcıoğlu; Ahmet Okay Caglayan; Ali K. Ozturk; Katsuhito Yasuno; William J. Brunken; Ergin Atalar; Cengiz Yalcinkaya; Alp Dinçer; Richard A. Bronen; Shrikant Mane; Tayfun Ozcelik; Richard P. Lifton; Nenad Sestan; Kaya Bilguvar; Murat Gunel

The biological basis for regional and inter-species differences in cerebral cortical morphology is poorly understood. We focused on consanguineous Turkish families with a single affected member with complex bilateral occipital cortical gyration abnormalities. By using whole-exome sequencing, we initially identified a homozygous 2-bp deletion in LAMC3, the laminin γ3 gene, leading to an immediate premature termination codon. In two other affected individuals with nearly identical phenotypes, we identified a homozygous nonsense mutation and a compound heterozygous mutation. In human but not mouse fetal brain, LAMC3 is enriched in postmitotic cortical plate neurons, localizing primarily to the somatodendritic compartment. LAMC3 expression peaks between late gestation and late infancy, paralleling the expression of molecules that are important in dendritogenesis and synapse formation. The discovery of the molecular basis of this unusual occipital malformation furthers our understanding of the complex biology underlying the formation of cortical gyrations.


Blood | 2010

Rapid generation of maturationally synchronized human dendritic cells: contribution to the clinical efficacy of extracorporeal photochemotherapy

Carole L. Berger; Kristin Hoffmann; Juan Gabriel Vasquez; Shrikant Mane; Julia M. Lewis; Renata B. Filler; Aiping Lin; Hongyu Zhao; Tyler S. Durazzo; Abigail Baird; William M. Lin; Francine M. Foss; Inger Christensen; Michael Girardi; Robert E. Tigelaar; Richard L. Edelson

Extracorporeal photochemotherapy (ECP) is widely used to treat cutaneous T-cell lymphoma, graft-versus-host disease, and allografted organ rejection. Its clinical and experimental efficacy in cancer immunotherapy and autoreactive disorders suggests a novel mechanism. This study reveals that ECP induces a high percentage of processed monocytes to enter the antigen-presenting dendritic cell (DC) differentiation pathway, within a single day, without added cytokines, as determined by enhanced expression of relevant genes. The resulting DCs are capable of processing and presentation of exogenous and endogenous antigen and are largely maturationally synchronized, as assessed by the level of expression of costimulatory surface molecules. Principal component analysis of the ECP-induced monocyte transcriptome reveals that activation or suppression of more than 1100 genes produces a reproducible distinctive molecular signature, common to ECP-processed monocytes from normal subjects, and those from patients. Because ECP induces normal monocytes to enter the DC differentiation pathway, this phenomenon is independent of disease state. The efficiency with which ECP stimulates new functional DCs supports the possibility that these cells participate prominently in the clinical successes of the treatment. Appropriately modified by future advances, ECP may potentially offer a general source of therapeutic DCs.

Collaboration


Dive into the Shrikant Mane's collaboration.

Top Co-Authors

Avatar

Murim Choi

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bernie Devlin

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge