Shu-Dong Zhang
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shu-Dong Zhang.
Molecular Phylogenetics and Evolution | 2011
Shu-Dong Zhang; Douglas E. Soltis; Yang Yang; De-Zhu Li; Ting-Shuang Yi
Despite many attempts to resolve evolutionary relationships among the major clades of Rosales, some nodes have been extremely problematic and have remained unresolved. In this study, we use two nuclear and 10 plastid loci to infer phylogenetic relationships among all nine families of Rosales. Rosales were strongly supported as monophyletic; within Rosales all family relationships are well-supported with Rosaceae sister to all other members of the order. Remaining Rosales can be divided into two subclades: (1) Ulmaceae are sister to Cannabaceae plus (Urticaceae+Moraceae); (2) Rhamnaceae are sister to Elaeagnaceae plus (Barbeyaceae+Dirachmaceae). One noteworthy result is that we recover the first strong support for a sister relationship between the enigmatic Dirachmaceae and Barbeyaceae. These two small families have distinct morphologies and potential synapomorphies remain unclear. Future studies should try to identify nonDNA synapomorphies uniting Barbeyaceae with Dirachmaceae.
New Phytologist | 2017
Shu-Dong Zhang; Jian Jun Jin; Si Yun Chen; Mark W. Chase; Douglas E. Soltis; Hong Tao Li; Jun-Bo Yang; De-Zhu Li; Ting-Shuang Yi
Phylogenetic relationships in Rosaceae have long been problematic because of frequent hybridisation, apomixis and presumed rapid radiation, and their historical diversification has not been clarified. With 87 genera representing all subfamilies and tribes of Rosaceae and six of the other eight families of Rosales (outgroups), we analysed 130 newly sequenced plastomes together with 12 from GenBank in an attempt to reconstruct deep relationships and reveal temporal diversification of this family. Our results highlight the importance of improving sequence alignment and the use of appropriate substitution models in plastid phylogenomics. Three subfamilies and 16 tribes (as previously delimited) were strongly supported as monophyletic, and their relationships were fully resolved and strongly supported at most nodes. Rosaceae were estimated to have originated during the Late Cretaceous with evidence for rapid diversification events during several geological periods. The major lineages rapidly diversified in warm and wet habits during the Late Cretaceous, and the rapid diversification of genera from the early Oligocene onwards occurred in colder and drier environments. Plastid phylogenomics offers new and important insights into deep phylogenetic relationships and the diversification history of Rosaceae. The robust phylogenetic backbone and time estimates we provide establish a framework for future comparative studies on rosaceous evolution.
BMC Genomics | 2015
Shu-Dong Zhang; Li-Zhen Ling; Ting-Shuang Yi
BackgroundSquamosa promoter binding protein (SBP)-box family genes encode plant-specific transcription factors that control many important biological functions, including phase transition, inflorescence branching, fruit ripening, and copper homeostasis. Nevertheless, the evolutionary patterns of SBP-box genes and evolutionary forces driving them are still not well understood.Methods104 SBP-box gene candidates of five representative land plants were obtained from Phytozome database (v10.3). Phylogenetic combined with gene structure analyses were used to identify SBP-box gene lineages in land plants. Gene copy number and the sequence and structure features were then compared among these different SBP-box lineages. Selection analysis, relative rate tests and expression divergence were finally used to interpret the evolutionary relationships and divergence of SBP-box genes in land plants.ResultsWe investigated 104 SBP-box genes from moss, Arabidopsis, poplar, rice, and maize. These genes are divided into group I and II, and the latter is further divided into two subgroups (subgroup II-1 and II-2) based on phylogenetic analysis. Interestingly, subgroup II-1 genes have similar sequence and structural features to group I genes, whereas subgroup II-2 genes exhibit intrinsic differences on these features, including high copy numbers and the presence of miR156/miR529 regulation. Further analyses indicate that subgroup II-1 genes are constrained by stronger purifying selection and evolve at a lower substitution rate than II-2 genes, just as group I genes do when compared to II genes. Among subgroup II-2 genes, miR156 targets evolve more rapidly than miR529 targets and experience comparatively relaxed purifying selection. These results suggest that group I and subgroup II-1 genes under strong selective constraint are conserved. By contrast, subgroup II-2 genes evolve under relaxed purifying selection and have diversified through gene copy duplications and changes in miR156/529 regulation, which might contribute to morphological diversifications of land plants.ConclusionsOur results indicate that different evolutionary rates and selection strengths lead to differing evolutionary patterns in SBP-box genes in land plants, providing a guide for future functional diversity analyses of these genes.
PLOS ONE | 2014
Shu-Dong Zhang; Li-Zhen Ling
Genes in the SQUAMOSA promoter-binding-protein (SBP-box) gene family encode transcriptional regulators and perform a variety of regulatory functions that involved in the developmental and physiological processes of plants. In this study, a comprehensive computational analysis identified 15 candidates of the SBP-box gene family in the castor bean (Ricinus communis). The phylogenetic and domain analysis indicated that these genes were divided into two groups (group I and II). The group II was a big branch and was further classified into three subgroups (subgroup II-1 to 3) based on the phylogeny, gene structures and conserved motifs. It was observed that the genes of subgroup II-1 had distinct evolutionary features from those of the other two subgroups, however, were more similar to those of group I. Therefore, we inferred that group I and subgroup II-1 might retain ancient signals, whereas the subgroup II-2 and 3 exhibited the divergence during evolutionary process. Estimation of evolutionary parameters (dN and dN/dS) further supported our hypothesis. At first, the group I was more constrained by strong purifying selection and evolved slowly with a lower substitution rate than group II. As regards the three subgroups, subgroup II-1 had the lowest rate of substitution and was under strong purifying selection. By contrast, subgroups II-2 and 3 evolved more rapidly and experienced less purifying selection. These results indicated that the different evolutionary rates and selection strength caused the different evolutionary patterns of the members of SBP-box genes in castor bean. Taken together, these results provide better insights into understanding evolutionary divergence of the members of SBP-box gene family in castor bean and provide a guide for future functional diverse analyses of this gene family.
PLOS ONE | 2017
Nan Jiang; Zhuang Zhou; Jun-Bo Yang; Shu-Dong Zhang; Kai-Yun Guan; Yunhong Tan; Wen-Bin Yu
Morphological and molecular evidence strongly supported the monophyly of tribe Anemoneae DC.; however, phylogenetic relationships among genera of this tribe have still not been fully resolved. In this study, we sampled 120 specimens representing 82 taxa of tribe Anemoneae. One nuclear ribosomal internal transcribed spacer (nrITS) and six plastid markers (atpB-rbcL, matK, psbA-trnQ, rpoB-trnC, rbcL and rps16) were amplified and sequenced. Both Maximum likelihood and Bayesian inference methods were used to reconstruct phylogenies for this tribe. Individual datasets supported all traditional genera as monophyletic, except Anemone and Clematis that were polyphyletic and paraphyletic, respectively, and revealed that the seven single-gene datasets can be split into two groups, i.e. nrITS + atpB-rbcL and the remaining five plastid markers. The combined nrITS + atpB-rbcL dataset recovered monophyly of subtribes Anemoninae (i.e. Anemone s.l.) and Clematidinae (including Anemoclema), respectively. However, the concatenated plastid dataset showed that one group of subtribes Anemoninae (Hepatica and Anemone spp. from subgenus Anemonidium) close to the clade Clematis s.l. + Anemoclema. Our results strongly supported a close relationship between Anemoclema and Clematis s.l., which included Archiclematis and Naravelia. Non-monophyly of Anemone s.l. using the plastid dataset indicates to revise as two genera, new Anemone s.l. (including Pulsatilla, Barneoudia, Oreithales and Knowltonia), Hepatica (corresponding to Anemone subgenus Anemonidium).
Molecules | 2018
Hongying Jian; Yong-Hong Zhang; Huijun Yan; Xianqin Qiu; Qigang Wang; Shubin Li; Shu-Dong Zhang
Rosa chinensis var. spontanea, an endemic and endangered plant of China, is one of the key ancestors of modern roses and a source for famous traditional Chinese medicines against female diseases, such as irregular menses and dysmenorrhea. In this study, the complete chloroplast (cp) genome of R. chinensis var. spontanea was sequenced, analyzed, and compared to congeneric species. The cp genome of R. chinensis var. spontanea is a typical quadripartite circular molecule of 156,590 bp in length, including one large single copy (LSC) region of 85,910 bp and one small single copy (SSC) region of 18,762 bp, separated by two inverted repeat (IR) regions of 25,959 bp. The GC content of the whole genome is 37.2%, while that of LSC, SSC, and IR is 42.8%, 35.2% and 31.2%, respectively. The genome encodes 129 genes, including 84 protein-coding genes (PCGs), 37 transfer RNA (tRNA) genes, and eight ribosomal RNA (rRNA) genes. Seventeen genes in the IR regions were found to be duplicated. Thirty-three forward and five inverted repeats were detected in the cp genome of R. chinensis var. spontanea. The genome is rich in SSRs. In total, 85 SSRs were detected. A genome comparison revealed that IR contraction might be the reason for the relatively smaller cp genome size of R. chinensis var. spontanea compared to other congeneric species. Sequence analysis revealed that the LSC and SSC regions were more divergent than the IR regions within the genus Rosa and that a higher divergence occurred in non-coding regions than in coding regions. A phylogenetic analysis showed that the sampled species of the genus Rosa formed a monophyletic clade and that R. chinensis var. spontanea shared a more recent ancestor with R. lichiangensis of the section Synstylae than with R. odorata var. gigantea of the section Chinenses. This information will be useful for the conservation genetics of R. chinensis var. spontanea and for the phylogenetic study of the genus Rosa, and it might also facilitate the genetics and breeding of modern roses.
Frontiers in Plant Science | 2018
Yin-Huan Wang; Susann Wicke; Hong Wang; Jian-Jun Jin; Si-Yun Chen; Shu-Dong Zhang; De-Zhu Li; Ting-Shuang Yi
The subfamily Cercidoideae is an early-branching legume lineage, which consists of 13 genera distributed in the tropical and warm temperate Northern Hemisphere. A previous study detected two plastid genomic variations in this subfamily, but the limited taxon sampling left the overall plastid genome (plastome) diversification across the subfamily unaddressed, and phylogenetic relationships within this clade remained unresolved. Here, we assembled eight plastomes from seven Cercidoideae genera and conducted phylogenomic-comparative analyses in a broad evolutionary framework across legumes. The plastomes of Cercidoideae all exhibited a typical quadripartite structure with a conserved gene content typical of most angiosperm plastomes. Plastome size ranged from 151,705 to 165,416 bp, mainly due to the expansion and contraction of inverted repeat (IR) regions. The order of genes varied due to the occurrence of several inversions. In Tylosema species, a plastome with a 29-bp IR-mediated inversion was found to coexist with a canonical-type plastome, and the abundance of the two arrangements of isomeric molecules differed between individuals. Complete plastome data were much more efficient at resolving intergeneric relationships of Cercidoideae than the previously used selection of only a few plastid or nuclear loci. In sum, our study revealed novel insights into the structural diversification of plastomes in an early-branching legume lineage, and, thus, into the evolutionary trajectories of legume plastomes in general.
Molecular Phylogenetics and Evolution | 2016
Lei Zhao; Xia Li; Ning Zhang; Shu-Dong Zhang; Ting-Shuang Yi; Hong Ma; Zhen-Hua Guo; De-Zhu Li
The Rosids is one of the largest groups of flowering plants, with 140 families and ∼70,000 species. Previous phylogenetic studies of the rosids have primarily utilized organelle genes that likely differ in evolutionary histories from nuclear genes. To better understand the evolutionary history of rosids, it is necessary to investigate their phylogenetic relationships using nuclear genes. Here, we employed large-scale phylogenomic datasets composed of nuclear genes, including 891 clusters of putative orthologous genes. Combined with comprehensive taxon sampling covering 63 species representing 14 out of the 17 orders, we reconstructed the rosids phylogeny with coalescence and concatenation methods, yielding similar tree topologies from all datasets. However, these topologies did not agree on the placement of Zygophyllales. Through comprehensive analyses, we found that missing data and gene tree heterogeneity were potential factors that may mislead concatenation methods, in particular, large amounts of missing data under high gene tree heterogeneity. Our results provided new insights into the deep phylogenetic relationships of the rosids, and demonstrated that coalescence methods may effectively resolve the phylogenetic relationships of the rosids with missing data under high gene tree heterogeneity.
PLOS ONE | 2013
Xiang Li; Li-yan Peng; Shu-Dong Zhang; Qin-shi Zhao; Ting-Shuang Yi
Aims Erigeron breviscapus (Vant.) Hand.-Mazz. is an important, widely used Chinese herb with scutellarin, 1,5-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid and erigoster B being its major active compounds. We aimed to resolve the influence of biotic and abiotic factors on the concentrations of these compounds and to determine appropriate cultivation methods to improve the yields of the four compounds in this herb. Methods In order to detect the major genetic and natural environmental factors affecting the yields of these four compounds, we applied AFLP markers to investigate the population genetic differentiation and HPLC to measure the concentrations of four major active compounds among 23 wild populations which were located across almost the entire distribution of this species in China. The meteorological data including annual average temperature, annual average precipitation and annual average hours of sunshine were collected. The relationships among the concentrations of four compounds and environmental factors and genetic differentiation were studied. Important Findings Low intraspecific genetic differentiation is detected, and there is no obvious correlation between the genetic differentiation and the contents of the chemical compounds. We investigated the correlation between the concentrationsof four compounds (scutellarin, 1,5-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid and erigoster B) and environmental factors. Concentrations of two compounds (1,5-dicaffeoylquinic acid and 3,5-dicaffeoylquinic acid) were correlated with environmental factors. The concentration of 1,5-dicaffeoylquinic acid is positively correlated with latitude, and is negatively correlated with the annual average temperature. The concentration of 3,5-dicaffeoylquinic acid is positively correlated with annual average precipitation. Therefore, changing cultivation conditions may significantly improve the yields of these two compounds. We found the concentration of scutellarin positively correlated with that of erigoster B and 3,5-dicaffeoylquinic acid, respectively. We inferred that the synthesis of these two pairs of compounds may share similar triggering mechanism as they synthesized in a common pathway.
Conservation Genetics Resources | 2018
Hongying Jian; Shu-Dong Zhang; Ting Zhang; Xianqin Qiu; Huijun Yan; Shubin Li; Qigang Wang; Kaixue Tang