Shu-Fu Lin
Memorial Sloan Kettering Cancer Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shu-Fu Lin.
Human Gene Therapy | 2008
Kaitlyn J. Kelly; Yanghee Woo; Peter Brader; Zhenkun Yu; Christopher C. Riedl; Shu-Fu Lin; Nanhai Chen; Yong A. Yu; Valerie W. Rusch; Aladar A. Szalay; Yuman Fong
Malignant pleural mesothelioma (MPM) is a fatal disease with a median survival of less than 14 months. For the first time, a genetically engineered vaccinia virus is shown to produce efficient infection, replication, and oncolytic effect against MPM. GLV-1h68 is a replication-competent engineered vaccinia virus carrying transgenes encoding Renilla luciferase, green fluorescent protein (both inserted at the F14.5L locus), beta-galactosidase (inserted at the J2R locus, which encodes thymidine kinase), and beta-glucuronidase (at the A56R locus, which encodes hemagglutinin). This virus was tested in six human MPM cell lines (MSTO-211H, VAMT, JMN, H-2373, H-2452, and H-2052). GLV-1h68 successfully infected all cell lines. For the most sensitive line, MSTO-211H, expression of green fluorescent protein (GFP) started within 4 hr with increasing intensity over time until nearly 100% of cells expressed GFP at 24 hr. All cell lines were sensitive to killing by GLV-1h68, with the degree of sensitivity predictable by infectivity assay. Even the most resistant cell line exhibited 44 +/- 3.8% cell survival by day 7 when infected at a multiplicity of infection of 1.0. Viral proliferation assays demonstrated 2-to 4-fold logarithmic replication of GLV-1h68 in the cell lines tested. In an orthotopic model, GLV-1h68 effectively prevented development of cachexia and tumor-related morbidity, reduced tumor burden, and cured MPM in both early and late treatment groups. GLV-1h68 was successfully used to treat MPM in vitro and in an orthotopic model (in vivo). These promising results warrant clinical investigation of GLV-1h68 as a novel agent in the treatment of MPM.
The Journal of Clinical Endocrinology and Metabolism | 2008
Shu-Fu Lin; Daniel L. Price; Chun-Hao Chen; Peter Brader; Sen Li; Lorena Gonzalez; Qian Zhang; Yong A. Yu; Nanhai Chen; Aladar A. Szalay; Yuman Fong; Richard J. Wong
CONTEXT Anaplastic thyroid carcinoma (ATC) is a fatal disease with a median survival of only 6 months. Novel therapies are needed to improve dismal outcomes. OBJECTIVE A mutated, replication-competent, vaccinia virus (GLV-1h68) has oncolytic effects on human ATC cell lines in vitro. We assessed the utility of GLV-1h68 in treating anaplastic thyroid cancer in vivo. DESIGN Athymic nude mice with xenograft flank tumors of human ATCs (8505C and DRO90-1) were treated with a single intratumoral injection of GLV-1h68 at low dose (5x10(5) plaque-forming unit), high dose (5x10(6) plaque-forming unit), or PBS. Virus-mediated marker gene expression (luciferase, green fluorescent protein, and beta-galactosidase), viral biodistribution, and flank tumor volumes were measured. RESULTS Luciferase expression was detected 2 d after injection. Continuous viral replication within tumors was reflected by increasing luciferase activity to d 9. At d 10, tumor viral recovery was increased more than 50-fold as compared with the injected dose, and minimal virus was recovered from the lung, liver, brain, heart, spleen, and kidneys. High-dose virus directly injected into normal tissues was undetectable at d 10. The mean volume of control 8505C tumors increased 50.8-fold by d 45, in contrast to 10.5-fold (low dose) and 2.1-fold (high dose; P=0.028) increases for treated tumors. DRO90-1 tumors also showed significant growth inhibition by high-dose virus. No virus-related toxicity was observed throughout the study. CONCLUSIONS GLV-1h68 efficiently infects, expresses transgenes within, and inhibits the growth of ATC in vivo. These promising findings support future clinical trials for patients with ATC.
Clinical Cancer Research | 2008
Shu-Fu Lin; Sizhi Paul Gao; Daniel L. Price; Sen Li; Ting-Chao Chou; Paramjeet Singh; Yu-Yao Huang; Yuman Fong; Richard J. Wong
Purpose: Novel therapeutic regimens are needed to improve the dismal outcomes of patients with anaplastic thyroid cancer (ATC). Oncolytic herpes simplex virus have shown promising activity against human ATC. We studied the application of oncolytic herpes simplex virus (G207 and NV1023) in combination with currently used chemotherapeutic drugs (paclitaxel and doxorubicin) for the treatment of ATC. Experimental Design and Results: All four agents showed dose-response cytotoxicity in vitro for the human ATC cell lines KAT4 and DRO90-1. G207, combined with paclitaxel, showed synergistic cytotoxicity. Chou-Talalay combination indices ranged from 0.56 to 0.66 for KAT4, and 0.68 to 0.74 for DRO90-1 at higher affected fractions. Paclitaxel did not enhance G207 viral entry and early gene expression or G207 viral replication. Paclitaxel combined with G207 compared with single-agent treatment or controls showed significantly increased microtubule acetylation, mitotic arrest, aberrant chromatid separation, inhibition of metaphase to anaphase progression, and apoptosis. A single i.t. injection of G207 combined with biweekly i.p. paclitaxel injections in athymic nude mice bearing KAT4 flank tumors showed significantly reduced mean tumor volume (74 ± 38 mm3) compared with G207 alone (388 ± 109 mm3), paclitaxel alone (439 ± 137 mm3), and control (520 ± 160 mm3) groups at 16 days. There was no morbidity in vivo attributable to therapy. Conclusions: Mechanisms of paclitaxel antitumoral activity, including microtubule acetylation, mitotic block, and apoptosis, were enhanced by G207, which also has direct oncolytic effects. Combination of G207 and paclitaxel therapy is synergistic in treating ATC and holds promise for patients with this fatal disease.
British Journal of Surgery | 2010
M.-H. Dai; D. Zamarin; S. P. Gao; Ting-Chao Chou; Lorena Gonzalez; Shu-Fu Lin; Y. Fong
Despite much research in chemotherapy and radiotherapy, pancreatic adenocarcinoma remains a fatal disease, highly resistant to all treatment modalities. Recent developments in the field of herpes simplex virus (HSV) engineering have allowed the generation of a number of promising virus vectors for treatment of many cancers, including pancreatic tumours. This study examined the use of one such virus, NV1023, in combination with radiation therapy in pancreatic cancer cell lines.
Archives of Otolaryngology-head & Neck Surgery | 2010
Daniel L. Price; Shu-Fu Lin; Ziqun Han; Guy Simpson; Robert S. Coffin; Joyce Wong; Sen Li; Yuman Fong; Richard J. Wong
OBJECTIVE To determine if prodrug conversion of fluorocytosine to fluorouracil by an engineered herpes virus, OncoVEX(GALV/CD), enhances oncolytic therapy of head and neck squamous cell carcinoma. DESIGN We assessed the ability of OncoVEX(GALV/CD) and OncoVEX(GFP) to infect, replicate within, and lyse 4 head and neck squamous cell carcinoma lines in vitro. The effects of adding fluorocytosine with OncoVEX(GALV/CD) were evaluated. RESULTS Head and neck squamous cell carcinoma was permissive to green fluorescent protein expression in100% of cells by OncoVEX(GFP) at a multiplicity of infection of 1 after 48 hours and supported logarithmic viral replication. Virus caused more than 60% cell death 6 days after exposure to virus at a multiplicity of infection of 0.1 in 3 of the 4 cell lines. Fluorocytosine did not enhance cytotoxicity induced by OncoVEX(GALV/CD) at a multiplicity of infection of 0.1. However, for the least-sensitive SCC25 cell line, virus at a multiplicity of infection of 0.01 was cytotoxic to only 4% of cells after 6 days but was cytotoxic to 35% of cells with fluorocytosine. CONCLUSIONS OncoVEX(GALV/CD) efficiently infects, replicates within, and lyses head and neck squamous cell carcinoma at relatively low viral doses. Prodrug conversion by cytosine deaminase did not enhance therapy at viral doses that cause efficient cytotoxicity but may have beneficial effects in less-sensitive cell lines at low viral doses.
Human Gene Therapy | 2014
Chun-Hao Chen; Wei-Yi Chen; Shu-Fu Lin; Richard J. Wong
Cancers exhibiting epithelial-mesenchymal transition (EMT) are associated with aggressive behavior and increased metastatic potential. Therapies that are able to target EMT would have significant clinical value. Nectin-1 is a cell surface herpes simplex virus type 1 (HSV-1) receptor that also forms a component of intercellular adherens junctions, which are typically disrupted in EMT. To explore relationships between HSV-1 sensitivity and EMT, we generated cell lines with a stable EMT phenotype from human follicular thyroid cancer (WRO82-1) through E-cadherin silencing with short hairpin RNA (shEcadWRO). HSV-1 viral attachment and gene expression were both enhanced in shEcadWRO as compared with shControl. Immunoblotting and immunostaining revealed enhanced nectin-1 expression by shEcadWRO. Receptor-blocking assays demonstrated that increased herpesviral entry into shEcadWRO as compared with shControl was mediated predominantly through nectin-1. Colocalization of green fluorescent protein-tagged HSV-1 and tdTomato-tagged nectin-1 confirmed an increase in viral attachment to nectin-1 in shEcadWRO. Cell viability assays demonstrated increased susceptibility of shEcadWRO to HSV-1 oncolysis, and a murine flank tumor model showed significantly enhanced regression of shEcadWRO tumors in response to oncolytic HSV-1 as compared with control tumors. A separate model of EMT induction through transforming growth factor-β stimulation confirmed enhanced HSV-1 susceptibility in Panc1 cells. These results demonstrate that the process of EMT leads to increased herpesviral susceptibility through enhanced cell surface nectin-1 expression, suggesting that cancers exhibiting EMT may be naturally sensitive targets for herpesviral therapy.
Clinical Cancer Research | 2008
Zhenkun Yu; Sen Li; Yu-Yao Huang; Shu-Fu Lin; Yuman Fong; Richard J. Wong
Purpose: Cancer metastases may have phenotypic and genetic differences from their primary cancers of origin. Engineered, replication-competent, attenuated viruses based on herpes simplex virus-1 (HSV-1) have shown potent oncolytic effects in treating primary tumors in animal tumor models, but their efficacy in treating lymph node metastases is poorly understood. We compared the efficacy of an attenuated oncolytic HSV-1 (NV1023) in treating a series of murine squamous carcinoma cell lines derived from serial implantation and harvest from metastatic lymph nodes. Experimental Design and Results: The auricles of C3H/HeJ mice were implanted with SCCVII. Cervical nodal metastases were isolated, expanded in vitro, and reimplanted into new mice. A series of cell lines (LN1-LN7) were generated through seven serial passages. Cells from higher LN passages showed consistent trends toward increased migratory and invasive ability, increased cell surface nectin-1 (an HSV-1 receptor) expression, and increased glycoprotein D binding. Exposure to NV1023 showed increased viral entry, replication, and cytotoxicity with higher LN passages. Intratumoral injection of NV1023 in a murine flank tumor model caused significantly greater tumor regression and increased viral infection of LN7 compared with SCCVII. Conclusions: These results show that lymph node metastases may undergo selection for characteristics, including increased nectin-1 expression, that make them more sensitive targets for herpes oncolytic therapy. These findings support the clinical application of these agents for the treatment of lymph node metastases.
PLOS ONE | 2017
Shu-Fu Lin; Jen-Der Lin; Chuen Hsueh; Ting-Chao Chou; Richard J. Wong
Background We explored the therapeutic effects of dinaciclib, a cyclin-dependent kinase (CDK) inhibitor, in the treatment of thyroid cancer. Materials and methods Seven cell lines originating from three pathologic types of thyroid cancer (papillary, follicular and anaplastic) were studied. The cytotoxicity of dinaciclib was measured using a lactate dehydrogenase assay. The expression of proteins associated with cell cycle and apoptosis was assessed using Western blot analysis and immunofluorescence microscopy. Cell cycle distribution was measured by flow cytometry and immunofluorescence microscopy. Apoptosis and caspase-3 activity were measured by flow cytometry and fluorometric assay. Mice bearing flank anaplastic thyroid cancer (ATC) were treated with intraperitoneal injections of dinaciclib. Results Dinaciclib inhibited thyroid cancer cell proliferation in a dose-dependent manner. Dinaciclib had a low median-effect dose (≤ 16.0 nM) to inhibit cell proliferation in seven thyroid cancer cell lines. Dinaciclib decreased CDK1, cyclin B1, and Aurora A expression, induced cell cycle arrest in the G2/M phase, and induced accumulation of prophase mitotic cells. Dinaciclib decreased Mcl-1, Bcl-xL and survivin expression, activated caspase-3 and induced apoptosis. In vivo, the growth of ATC xenograft tumors was retarded in a dose-dependent fashion with daily dinaciclib treatment. Higher-dose dinaciclib (50 mg/kg) caused slight, but significant weight loss, which was absent with lower-dose dinaciclib (40 mg/kg) treatment. Conclusions Dinaciclib inhibited thyroid cancer proliferation both in vitro and in vivo. These findings support dinaciclib as a potential drug for further studies in clinical trials for the treatment of patients with refractory thyroid cancer.
Oncotarget | 2017
Shu-Fu Lin; Jen-Der Lin; Chuen Hsueh; Ting-Chao Chou; Richard J. Wong
Many human cancers have altered cyclin-dependent kinase activity. Inhibition of cyclin-dependent kinases may arrest cell cycle progression and represents an important strategy in the treatment of malignancies. We evaluated the therapeutic effects of roniciclib, a cyclin-dependent kinase inhibitor, as a treatment for anaplastic thyroid cancer. Roniciclib inhibited anaplastic thyroid cancer cell proliferation in a dose-dependent manner. Roniciclib activated caspase-3 activity and induced apoptosis. Cell cycle progression was arrested in G2/M phase. In vivo, the growth of anaplastic thyroid cancer xenograft tumors was retarded by roniciclib treatment without evidence of toxicity. These data provide a rationale for further clinical evaluation using roniciclib in the treatment of patients with anaplastic thyroid cancer.Many human cancers have altered cyclin-dependent kinase activity. Inhibition of cyclin-dependent kinases may arrest cell cycle progression and represents an important strategy in the treatment of malignancies. We evaluated the therapeutic effects of roniciclib, a cyclin-dependent kinase inhibitor, as a treatment for anaplastic thyroid cancer. Roniciclib inhibited anaplastic thyroid cancer cell proliferation in a dose-dependent manner. Roniciclib activated caspase-3 activity and induced apoptosis. Cell cycle progression was arrested in G2/M phase. In vivo, the growth of anaplastic thyroid cancer xenograft tumors was retarded by roniciclib treatment without evidence of toxicity. These data provide a rationale for further clinical evaluation using roniciclib in the treatment of patients with anaplastic thyroid cancer.
Oncotarget | 2017
Shu-Fu Lin; Jen-Der Lin; Chuen Hsueh; Ting-Chao Chou; Chun-Nan Yeh; Ming-Huang Chen; Richard J. Wong
Heat shock protein 90 is a molecular chaperon that maintains the correct folding and function of multiple client proteins. The inhibition of heat shock protein 90, which leads to the simultaneous degradation of multiple proteins involved in oncogenic signaling pathways, has revealed an innovative strategy to treat a variety of cancer types. We evaluated the therapeutic effects of ganetespib, a heat shock protein 90 inhibitor, in treating thyroid cancer. Ganetespib effectively inhibited cell proliferation in a dose-dependent manner in eight cell lines originating from four major histologic types of thyroid cancer (papillary, follicular, anaplastic and medullary). Ganetespib decreased cyclin-dependent kinase 1 and arrested cell cycle progression in G2/M phase. The expression of proteins involved in RAS/RAF/ERK and PI3K/AKT/mTOR signaling pathways was also inhibited. The RET level was decreased in a medullary thyroid cancer cell line. Ganetespib increased Bim expression, activated caspase-3 and induced apoptosis. In vivo, ganetespib retarded the tumor growth of anaplastic and medullary thyroid cancer xenografts with acceptable safety profiles. These findings indicate that ganetespib has potential in the treatment of patients with thyroid cancer.