Shu-Meng Hao
Beijing University of Chemical Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shu-Meng Hao.
ACS Applied Materials & Interfaces | 2014
Chen-Xi Gui; Qian-Qian Wang; Shu-Meng Hao; Jin Qu; Pei-Pei Huang; Changyan Cao; Wei-Guo Song; Zhong-Zhen Yu
A sandwichlike magnesium silicate/reduced graphene oxide nanocomposite (MgSi/RGO) with high adsorption efficiency of organic dye and lead ion was synthesized by a hydrothermal approach. MgSi nanopetals were formed in situ on both sides of RGO sheets. The nanocomposite with good dispersion of nanopetals exhibits a high specific surface area of 450 m(2)/g and a good mass transportation property. Compared to MgSi and RGO, the mechanical stability and adsorption capacity of the nanocomposite is significantly improved due to the synergistic effect. The maximum adsorption capacities for methylene blue and lead ion are 433 and 416 mg/g, respectively.
Journal of Materials Chemistry | 2015
Chen-Xi Gui; Shu-Meng Hao; Yuan Liu; Jin Qu; Cheng Yang; Yunhua Yu; Qian-Qian Wang; Zhong-Zhen Yu
Layered nickel silicate provides massive interlayer space similar to graphite for the insertion and extraction of lithium ions and sodium ions; however, the poor electrical conductivity limits its electrochemical applications in energy storage devices. Herein, carbon nanotube@layered nickel silicate (CNT@NiSiOx) coaxial nanocables with flexible nickel silicate nanosheets grown on conductive carbon nanotubes (CNTs) are synthesized by a mild hydrothermal method. CNTs serve as conductive cables to improve the electron transfer performance of nickel silicate nanosheets, resulting in reduced contact and charge-transfer resistances. In addition to a high specific surface area, short ion diffusion distance and good electrical conductivity, one-dimensional coaxial nanocables have a stable structure to sustain volume change and avoid structure destruction during the charge–discharge process. As an anode material for lithium storage, the first cycle charge capacity of the CNT@NiSiOx nanocables reaches 770 mA h g−1 with the first cycle coulombic efficiency as high as 71.5%. Even after 50 cycles, the charge capacity still reaches 489 mA h g−1 at a current density of 50 mA g−1, which is nearly 87% and 360% higher than those of the NiSiOx/CNT mixture and nickel silicate nanotube, respectively. As anode materials for sodium storage, the coaxial nanocables exhibit a high initial charge capacity of 576 mA h g−1, which even retains 213 mA h g−1 at 20 mA g−1 after 16 cycles.
RSC Advances | 2015
Chen-Xi Gui; Qian-Jie Li; Ling-Ling Lv; Jin Qu; Qian-Qian Wang; Shu-Meng Hao; Zhong-Zhen Yu
Core–shell structured MgO@mesoporous silica spheres are synthesized by a two-step programmed method. MgO@mesoporous silica exhibits a high BET specific surface area of 567 m2 g−1 and a pore volume of 1.08 cm3 g−1. The stable mesoporous silica coating not only serves as a strong shell to improve the mechanical stability of MgO, but also enriches the adsorbates in the mesopores to reach a higher adsorption rate. The core–shell MgO@mesoporous silica spheres exhibit excellent removal capabilities of 3297 mg g−1 for Pb2+ and 420 mg g−1 for methylene blue, which are much higher than those of MgO itself.
Chemistry: A European Journal | 2016
Shu-Meng Hao; Jin Qu; Jing Yang; Chen-Xi Gui; Qian-Qian Wang; Qian-Jie Li; Xiaofeng Li; Zhong-Zhen Yu
Ion diffusion efficiency at the solid-liquid interface is an important factor for energy storage and adsorption from aqueous solution. Although K2 Mn4 O8 (KMO) exhibits efficient ion diffusion and ion-exchange capacities, due to its high interlayer space of 0.70 nm, how to enhance its mass transfer performance is still an issue. Herein, novel layered KMO/reduced graphene oxide (RGO) nanocomposites are fabricated through the anchoring of KMO nanoplates on RGO with a mild solution process. The face-to-face structure facilitates fast transfer of lithium and lead ions; thus leading to excellent lithium storage and lead ion adsorption. The anchoring of KMO on RGO not only increases electrical conductivity of the layered nanocomposites, but also effectively prevents aggregation of KMO nanoplates. The KMO/RGO nanocomposite with an optimal RGO content exhibits a first cycle charge capacity of 739 mA h g-1 , which is much higher than that of KMO (326 mA h g-1 ). After 100 charge-discharge cycles, it still retains a charge capacity of 664 mA h g-1 . For the adsorption of lead ions, the KMO/RGO nanocomposite exhibits a capacity of 341 mg g-1 , which is higher than those of KMO (305 mg g-1 ) and RGO (63 mg g-1 ) alone.
ACS Applied Materials & Interfaces | 2017
Yu-Jiao Zhang; Jin Qu; Shu-Meng Hao; Wei Chang; Qiu-Yu Ji; Zhong-Zhen Yu
Increasing demands for lithium-ion batteries (LIBs) with high energy density and high power density require highly reversible electrochemical reactions to enhance the cyclability and capacities of electrodes. As the reversible formation/decomposition of the solid electrolyte interface (SEI) film during the lithiation/delithiation process of Fe3S4 could bring about a higher capacity than its theoretical value, in the present work, synthesized Fe3S4 nanoparticles are sandwich-wrapped with reduced graphene oxide (RGO) to fabricate highly reversible and long cycling life anode materials for high-performance LIBs. The micron-sized long slit between sandwiched RGO sheets effectively prevents the aggregation of intermediate phases during the discharge/charge process and thus increases cycling capacity because of the reversible formation/decomposition of the SEI film driven by Fe nanoparticles. Furthermore, the RGO sheets interconnect with each other by a face-to-face mode to construct a more efficiently conductive network, and the maximum interfacial oxygen bridge bonds benefit the fast electron hopping from RGO to Fe3S4, improving the depth of the electrochemical reactions and facilitating the highly reversible lithiation/delithiation of Fe3S4. Thus, the resultant Fe3S4/RGO hybrid shows a highly reversible charge capacity of 1324 mA h g-1 over 275 cycles at a current density of 100 mA g-1, even retains 480 mA h g-1 over 500 cycles at 1000 mA g-1, which are much higher than reported values.
Chemistry: A European Journal | 2018
Yu-Jiao Zhang; Jin Qu; Shu-Meng Hao; Wei Chang; Qiu-Yu Ji; Zhi-Guo Jiang; Zhong-Zhen Yu
Although the electrochemical catalytic conversion process is effective in increasing the reversible capacity of lithium-ion batteries, the low contact efficiency between metal catalyst and substrate and pulverization of the solid electrolyte interface (SEI) film without protection are not beneficial for the electrochemical reactions. Herein, Fe7 S8 nanoparticles are confined by both reduced graphene oxide (RGO) and in-situ-formed amorphous carbon (C) to form dual-carbon-confined Fe7 S8 as a lithium-ion anode. The dual-carbon-confined structure provides a confined space to prevent pulverization of the SEI film and increases the local concentration of intermediate phases, which could be electrocatalytically decomposed by Fe nanoparticles formed in situ to increase the reversibility of the electrochemical reactions and gain high reversible capacity. In addition, the dual-carbon-confined structure ensures fast transfer of electrons and boosts transport of lithium ions due to the highly conductive dual-carbon shell. Thus, the Fe7 S8 /C/RGO anode delivers an excellent rate performance and long cycling stability. At current densities of 2000 and 5000 mA g-1 , the reversible capacities are 520 mA h g-1 over 1500 cycles and 294 mA h g-1 over 2000 cycles, respectively.
ACS Applied Materials & Interfaces | 2018
Zhong-Shuai Zhu; Jin Qu; Shu-Meng Hao; Shuang Han; Kun-Le Jia; Zhong-Zhen Yu
High activity and long-term stability are particularly important for peroxymonosulfate (PMS)-based degradation processes in wastewater treatment, especially under a flowing state. However, if the highly active nanomaterials are in a powder form, they could disperse well in water but would not be convenient for application under varied flow rates. A metal oxide/bacterial cellulose hybrid membrane fixed in a flowing bed is expected to solve these problems. Herein, α-Fe2O3 nanodisk/bacterial cellulose hybrid membranes as high-performance sulfate-radical-based visible light photocatalysts are synthesized for the first time. The bacterial cellulose with excellent mechanical stability and film-forming feature not only benefits the formation of a stable membrane to avoid the separation and recycling problems but also helps disperse and accommodate α-Fe2O3 nanodisks and thus enhances the visible light absorption performances, leading to an excellent PMS-based visible light degradation efficiency under both stirring and flowing states. Particularly, the optimized hybrid membrane photocatalyzes both cationic and anionic organic dyes under a flowing bed state for at least 84 h with the catalytic efficiency up to 100% and can be easily separated after the reaction, confirming its remarkable catalytic performance and long-term stability. Even under varied flow rates during the continuous process, it efficiently degrades rhodamine B and orange II from 3 to 16 mL h-1. When the flow rate goes back from high to low, the hybrid membrane quickly recovers its original performance, demonstrating the high activity and stability of the α-Fe2O3/bacterial cellulose membrane.
ACS Applied Materials & Interfaces | 2018
Shu-Meng Hao; Qian-Jie Li; Jin Qu; Fei An; Yu-Jiao Zhang; Zhong-Zhen Yu
Construction of a continuous conductance network with high electron-transfer rate is extremely important for high-performance energy storage. Owing to the highly efficient mass transport and information transmission, neurons are exactly a perfect model for electron transport, inspiring us to design a neuron-like reaction network for high-performance lithium-ion batteries (LIBs) with Fe3O4 as an example. The reactive cores (Fe3O4) are protected by carbon shells and linked by carbon filaments, constituting an integrated conductance network. Thus, once the reaction starts, the electrons released from every Fe3O4 cores are capable of being transferred rapidly through the whole network directly to the external circuit, endowing the nanocomposite with tremendous rate performance and ultralong cycle life. After 1000 cycles at current densities as high as 1 and 2 A g-1, charge capacities of the as-synthesized nanocomposite maintain 971 and 715 mA h g-1, respectively, much higher than those of reported Fe3O4-based anode materials. The Fe3O4-based conductive network provides a new idea for future developments of high-rate-performance LIBs.
Journal of Colloid and Interface Science | 2017
Kun-Le Jia; Jin Qu; Shu-Meng Hao; Fei An; Ya-Qiong Jing; Zhong-Zhen Yu
Construction of a heterostructure to prolong the life of electron-hole pairs is a very important approach to endow it with excellent photodegradation performances. Particularly, one-pot synthesis of heterostructures with the same component but different crystal structures to form a proper band gap is still challenging. Herein, bismuth silicate (BSO) heterostructures are synthesized using a one-pot hydrothermal approach without adding any other inorganic components. The crystal phase, morphology, surface state, and photochemical properties of the BSO materials are precisely tuned to fabricate two kinds of bismuth silicate heterostructures: rod-like Bi2SiO5/Bi12SiO20 and flower-like Bi2SiO5/Bi4Si3O12 heterostructures. Thanks to the two heterostructures and clean surface, the optimized BSO material exhibits a highly active photocatalytic performance with a remarkable cycling stability. It photodegrades Rhodamine B under visible light irradiation as fast as 15min with the reaction rate constants k and ks to be 0.399min-1 and 0.698min-1Lm-2, respectively, which is up to 189 times faster than reported.
Advanced Functional Materials | 2016
Shu-Meng Hao; Jin Qu; Zhong-Shuai Zhu; Xiao-Ying Zhang; Qian-Qian Wang; Zhong-Zhen Yu