Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shu Ran is active.

Publication


Featured researches published by Shu Ran.


Human Molecular Genetics | 2014

Meta-analysis of Genome-Wide Association Data Identifies Novel Susceptibility Loci for Obesity

Yu-Fang Pei; Lei Zhang; Yong-Jun Liu; Jian Li; Hui Shen; Yao-Zhong Liu; Qing Tian; Hao He; Shuyan Wu; Shu Ran; Ying-Ying Han; Rong Hai; Yong Lin; Jingying Zhu; Xue-Zhen Zhu; Christopher J. Papasian; Hong-Wen Deng

Obesity is a major public health problem with strong genetic determination. Multiple genetic variants have been implicated for obesity by conducting genome-wide association (GWA) studies, primarily focused on body mass index (BMI). Fat body mass (FBM) is phenotypically more homogeneous than BMI and is more appropriate for obesity research; however, relatively few studies have been conducted on FBM. Aiming to identify variants associated with obesity, we carried out meta-analyses of seven GWA studies for BMI-related traits including FBM, and followed these analyses by de novo replication. The discovery cohorts consisted of 21 969 individuals from diverse ethnic populations and a total of over 4 million genotyped or imputed SNPs. The de novo replication cohorts consisted of 6663 subjects from two independent samples. To complement individual SNP-based association analyses, we also carried out gene-based GWA analyses in which all variations within a gene were considered jointly. Individual SNP-based association analyses identified a novel locus 1q21 [rs2230061, CTSS (Cathepsin S)] that was associated with FBM after the adjustment of lean body mass (LBM) (P = 3.57 × 10(-8)) at the genome-wide significance level. Gene-based association analyses identified a novel gene NLK (nemo-like kinase) in 17q11 that was significantly associated with FBM adjusted by LBM. In addition, we confirmed three previously reported obesity susceptibility loci: 16q12 [rs62033400, P = 1.97 × 10(-14), FTO (fat mass and obesity associated)], 18q22 [rs6567160, P = 8.09 × 10(-19), MC4R (melanocortin 4 receptor)] and 2p25 [rs939583, P = 1.07 × 10(-7), TMEM18 (transmembrane protein 18)]. We also found that rs6567160 may exert pleiotropic effects to both FBM and LBM. Our results provide additional insights into the molecular genetic basis of obesity and may provide future targets for effective prevention and therapeutic intervention.


Journal of Human Genetics | 2012

Genome-wide association study of copy number variation identified gremlin1 as a candidate gene for lean body mass.

Rong Hai; Yu-Fang Pei; Hui Shen; Lei Zhang; Xiao-Gang Liu; Yong Lin; Shu Ran; Feng Pan; Li-Jun Tan; Shu-Feng Lei; Tie-Lin Yang; Yan Zhang; Xue-Zhen Zhu; Lan-Juan Zhao; Hong-Wen Deng

Lean body mass (LBM) is a heritable trait predicting a series of health problems, such as osteoporotic fracture and sarcopenia. We aim to identify sequence variants associated with LBM by a genome-wide association study (GWAS) of copy number variants (CNVs). We genotyped genome-wide CNVs of 1627 individuals of the Chinese population with Affymetrix SNP6.0 genotyping platform, which comprised of 9 40 000 copy number probes. We then performed a GWAS of CNVs with lean mass at seven sites: left and right arms, left and right legs, total of limb, trunk and whole body. We identified a CNV that is associated with LBM variation at the genome-wide significance level (CNV2073, Bonferroni corrected P-value 0.002 at right arm). CNV2073 locates at chromosome 15q13.3, which has been implicated as a candidate region for LBM by our previous linkage studies. The nearest gene, gremlin1, has a key role in the regulation of skeletal muscle formation and repair. Our results suggest that the gremlin1 gene is a potentially important gene for LBM variation. Our findings also show the utility and efficacy of CNV as genetic markers in association studies.


PLOS ONE | 2012

Genome-Wide Association Study of Copy Number Variants Suggests LTBP1 and FGD4 Are Important for Alcohol Drinking

Yu-Fang Pei; Lei Zhang; Tie-Lin Yang; Ying-Ying Han; Rong Hai; Shu Ran; Qing-long Tian; Hui Shen; Jian Jian Li; Xue-Zhen Zhu; Xingguang Luo; Hong-Wen Deng

Alcohol dependence (AD) is a complex disorder characterized by psychiatric and physiological dependence on alcohol. AD is reflected by regular alcohol drinking, which is highly inheritable. In this study, to identify susceptibility genes associated with alcohol drinking, we performed a genome-wide association study of copy number variants (CNVs) in 2,286 Caucasian subjects with Affymetrix SNP6.0 genotyping array. We replicated our findings in 1,627 Chinese subjects with the same genotyping array. We identified two CNVs, CNV207 (combined p-value 1.91E-03) and CNV1836 (combined p-value 3.05E-03) that were associated with alcohol drinking. CNV207 and CNV1836 are located at the downstream of genes LTBP1 (870 kb) and FGD4 (400 kb), respectively. LTBP1, by interacting TGFB1, may down-regulate enzymes directly participating in alcohol metabolism. FGD4 plays a role in clustering and trafficking GABAA receptor and subsequently influence alcohol drinking through activating CDC42. Our results provide suggestive evidence that the newly identified CNV regions and relevant genes may contribute to the genetic mechanism of alcohol dependence.


PLOS ONE | 2013

Bivariate Genome-Wide Association Analyses Identified Genes with Pleiotropic Effects for Femoral Neck Bone Geometry and Age at Menarche

Shu Ran; Yu-Fang Pei; Yong Jun Liu; Lei Zhang; Ying-Ying Han; Rong Hai; Qing Tian; Yong Lin; Tie-Lin Yang; Yan-Fang Guo; Hui Shen; Inderpal S. Thethi; Xue-Zhen Zhu; Hong-Wen Deng

Femoral neck geometric parameters (FNGPs), which include cortical thickness (CT), periosteal diameter (W), buckling ratio (BR), cross-sectional area (CSA), and section modulus (Z), contribute to bone strength and may predict hip fracture risk. Age at menarche (AAM) is an important risk factor for osteoporosis and bone fractures in women. Some FNGPs are genetically correlated with AAM. In this study, we performed a bivariate genome-wide association study (GWAS) to identify new candidate genes responsible for both FNGPs and AAM. In the discovery stage, we tested 760,794 SNPs in 1,728 unrelated Caucasian subject, followed by replication analyses in independent samples of US Caucasians (with 501 subjects) and Chinese (with 826 subjects). We found six SNPs that were associated with FNGPs and AAM. These SNPs are located in three genes (i.e. NRCAM, IDS and LOC148145), suggesting these three genes may co-regulate FNGPs and AAM. Our findings may help improve the understanding of genetic architecture and pathophysiological mechanisms underlying both osteoporosis and AAM.


Science China-life Sciences | 2012

Bivariate genome-wide association study suggests that the DARC gene influences lean body mass and age at menarche

Rong Hai; Lei Zhang; Yu-Fang Pei; Lan-Juan Zhao; Shu Ran; Ying-Ying Han; Xue-Zhen Zhu; Hui Shen; Qing Tian; Hong-Wen Deng

Lean body mass (LBM) and age at menarche (AAM) are two important complex traits for human health. The aim of this study was to identify pleiotropic genes for both traits using a powerful bivariate genome-wide association study (GWAS). Two studies, a discovery study and a replication study, were performed. In the discovery study, 909622 single nucleotide polymorphisms (SNPs) were genotyped in 801 unrelated female Han Chinese subjects using the Affymetrix human genome-wide SNP array 6.0 platform. Then, a bivariate GWAS was performed to identify the SNPs that may be important for LBM and AAM. In the replication study, significant findings from the discovery study were validated in 1692 unrelated Caucasian female subjects. One SNP rs3027009 that was bivariately associated with left arm lean mass and AAM in the discovery samples (P=7.26×10−6) and in the replication samples (P=0.005) was identified. The SNP is located at the upstream of DARC (Duffy antigen receptor for chemokines) gene, suggesting that DARC may play an important role in regulating the metabolisms of both LBM and AAM.


PLOS ONE | 2014

Genome-Wide Association Study Identified Copy Number Variants Important for Appendicular Lean Mass

Shu Ran; Yong-Jun Liu; Lei Zhang; Yu-Fang Pei; Tie-Lin Yang; Rong Hai; Ying-Ying Han; Yong Lin; Qing Tian; Hong-Wen Deng

Skeletal muscle is a major component of the human body. Age-related loss of muscle mass and function contributes to some public health problems such as sarcopenia and osteoporosis. Skeletal muscle, mainly composed of appendicular lean mass (ALM), is a heritable trait. Copy number variation (CNV) is a common type of human genome variant which may play an important role in the etiology of many human diseases. In this study, we performed genome-wide association analyses of CNV for ALM in 2,286 Caucasian subjects. We then replicated the major findings in 1,627 Chinese subjects. Two CNVs, CNV1191 and CNV2580, were detected to be associated with ALM (p = 2.26×10−2 and 3.34×10−3, respectively). In the Chinese replication sample, the two CNVs achieved p-values of 3.26×10−2 and 0.107, respectively. CNV1191 covers a gene, GTPase of the immunity-associated protein family (GIMAP1), which is important for skeletal muscle cell survival/death in humans. CNV2580 is located in the Serine hydrolase-like protein (SERHL) gene, which plays an important role in normal peroxisome function and skeletal muscle growth in response to mechanical stimuli. In summary, our study suggested two novel CNVs and the related genes that may contribute to variation in ALM.


Osteoporosis International | 2016

Association of 3q13.32 variants with hip trochanter and intertrochanter bone mineral density identified by a genome-wide association study

Yu-Fang Pei; Z.-G. Xie; Xiu-Yan Wang; Wen-Zhu Hu; L.-B. Li; Shu Ran; Yong Lin; Rong Hai; Hui Shen; Qing Tian; Yong-Hong Zhang; Shu-Feng Lei; Christopher J. Papasian; Hong-Wen Deng; Lei Zhang

SummaryWe performed a GWAS of trochanter and intertrochanter bone mineral density (BMD) in the Framingham Heart Study and replicated in three independent studies. Our results identified one novel locus around the associated variations at chromosomal region 3q13.32 and replicated two loci at chromosomal regions 3p21 and 8q24. Our findings provide useful insights that enhance our understanding of bone development, osteoporosis, and fracture pathogenesis.IntroductionHip trochanter (TRO) and intertrochanter (INT) subregions have important clinical relevance to subtrochanteric and intertrochanteric fractures but have rarely been studied by genome-wide association studies (GWASs).MethodsAiming to identify genomic loci associated with BMD variation at TRO and INT regions, we performed a GWAS utilizing the Framingham Heart Study (FHS, N = 6,912) as discovery sample and utilized the Women’s Health Initiative (WHI) African-American subsample (N = 845), WHI Hispanic subsample (N = 446), and Omaha osteoporosis study (N = 971), for replication.ResultsCombining the evidence from both the discovery and the replication samples, we identified one novel locus around the associated variations at chromosomal region 3q13.32 (rs1949542, discovery p = 6.16 × 10−8, replication p = 2.86 × 10−4 for INT-BMD; discovery p = 1.35 × 10−7, replication p = 4.16 × 10−4 for TRO-BMD, closest gene RP11-384F7.1). We also replicated two loci at chromosomal regions 3p21 (rs148725943, discovery p = 6.61 × 10−7, replication p = 5.22 × 10−4 for TRO-BMD, closest gene CTNNB1) and 8q24 (rs7839059, discovery p = 2.28 × 10−7, replication p = 1.55 × 10−3 for TRO-BMD, closest gene TNFRSF11B) that were reported previously. We demonstrated that the effects at both 3q13.32 and 3p21 were specific to the TRO, but not to the femoral neck and spine. In contrast, the effect at 8q24 was common to all the sites.ConclusionOur findings provide useful insights that enhance our understanding of bone development, osteoporosis, and fracture pathogenesis.


Genome Medicine | 2017

Whole-exome sequencing in amyotrophic lateral sclerosis suggests NEK1 is a risk gene in Chinese

Jacob Gratten; Qiong-Yi Zhao; Beben Benyamin; Fleur C. Garton; Ji He; Paul Leo; Marie Mangelsdorf; Lisa Anderson; Zong Hong Zhang; Lu Chen; Xiang-Ding Chen; Katie Cremin; Hong-Weng Deng; Janette Edson; Ying-Ying Han; Jessica Harris; Anjali K. Henders; Zi-Bing Jin; Zhongshan Li; Yong Lin; Xiaolu Liu; Mhairi Marshall; Bryan J. Mowry; Shu Ran; David C. Reutens; Sharon Song; Li-Jun Tan; Lu Tang; Robyn H. Wallace; Lawrie Wheeler

BackgroundAmyotrophic lateral sclerosis (ALS) is a progressive neurological disease characterised by the degeneration of motor neurons, which are responsible for voluntary movement. There remains limited understanding of disease aetiology, with median survival of ALS of three years and no effective treatment. Identifying genes that contribute to ALS susceptibility is an important step towards understanding aetiology. The vast majority of published human genetic studies, including for ALS, have used samples of European ancestry. The importance of trans-ethnic studies in human genetic studies is widely recognised, yet a dearth of studies of non-European ancestries remains. Here, we report analyses of novel whole-exome sequencing (WES) data from Chinese ALS and control individuals.MethodsWES data were generated for 610 ALS cases and 460 controls drawn from Chinese populations. We assessed evidence for an excess of rare damaging mutations at the gene level and the gene set level, considering only singleton variants filtered to have allele frequency less than 5 × 10–5 in reference databases. To meta-analyse our results with a published study of European ancestry, we used a Cochran–Mantel–Haenszel test to compare gene-level variant counts in cases vs controls.ResultsNo gene passed the genome-wide significance threshold with ALS in Chinese samples alone. Combining rare variant counts in Chinese with those from the largest WES study of European ancestry resulted in three genes surpassing genome-wide significance: TBK1 (p = 8.3 × 10–12), SOD1 (p = 8.9 × 10–9) and NEK1 (p = 1.1 × 10–9). In the Chinese data alone, SOD1 and NEK1 were nominally significantly associated with ALS (p = 0.04 and p = 7 × 10–3, respectively) and the case/control frequencies of rare coding variants in these genes were similar in Chinese and Europeans (SOD1: 1.5%/0.2% vs 0.9%/0.1%, NEK1 1.8%/0.4% vs 1.9%/0.8%). This was also true for TBK1 (1.2%/0.2% vs 1.4%/0.4%), but the association with ALS in Chinese was not significant (p = 0.14).ConclusionsWhile SOD1 is already recognised as an ALS-associated gene in Chinese, we provide novel evidence for association of NEK1 with ALS in Chinese, reporting variants in these genes not previously found in Europeans.


Scientific Reports | 2017

Gene-based genome-wide association study identified 19p13.3 for lean body mass

Shu Ran; Lei Zhang; Lu Liu; An-Ping Feng; Yu-Fang Pei; Ying-Ying Han; Yong Lin; Xiao Li; Wei-Wen Kong; Xin-Yi You; Wen Zhao; Qing Tian; Hui Shen; Yong-Hong Zhang; Hong-Wen Deng

Lean body mass (LBM) is a complex trait for human health. To identify genomic loci underlying LBM, we performed a gene-based genome-wide association study of lean mass index (LMI) in 1000 unrelated Caucasian subjects, and replicated in 2283 unrelated Caucasians subjects. Gene-based association analyses highlighted the significant associations of three genes UQCR, TCF3 and MBD3 in one single locus 19p13.3 (discovery p = 6.10 × 10−5, 1.65 × 10−4 and 1.10 × 10−4; replication p = 2.21 × 10−3, 1.84 × 10−3 and 6.95 × 10−3; combined p = 2.26 × 10−6, 4.86 × 10−6 and 1.15 × 10−5, respectively). These results, together with the known functional relevance of the three genes to LMI, suggested that the 19p13.3 region containing UQCR, TCF3 and MBD3 genes was a novel locus underlying lean mass variation.


Bone | 2016

Genome-wide association meta-analyses identified 1q43 and 2q32.2 for hip Ward's triangle areal bone mineral density

Yu-Fang Pei; Wen-Zhu Hu; Rong Hai; Xiu-Yan Wang; Shu Ran; Yong Lin; Hui Shen; Qing Tian; Shu-Feng Lei; Yong-Hong Zhang; Christopher J. Papasian; Hong-Wen Deng; Lei Zhang

Aiming to identify genomic variants associated with osteoporosis, we performed a genome-wide association meta-analysis of bone mineral density (BMD) at Wards triangle of the hip in 7175 subjects from 6 samples. We performed in silico replications with femoral neck, trochanter, and inter-trochanter BMDs in 6912 subjects from the Framingham heart study (FHS), and with forearm, femoral neck and lumbar spine BMDs in 32965 subjects from the GEFOS summary results. Combining the evidence from all samples, we identified 2 novel loci for areal BMD: 1q43 (rs1414660, discovery p=1.20×10(-8), FHS p=0.05 for trochanter BMD; rs9287237, discovery p=3.55×10(-7), FHS p=9.20×10(-3) for trochanter BMD, GEFOS p=0.02 for forearm BMD, nearest gene FMN2) and 2q32.2 (rs56346965, discovery p=7.48×10(-7), FHS p=0.10 for inter-trochanter BMD, GEFOS p=0.02 for spine BMD, nearest gene NAB1). The two lead SNPs rs1414660 and rs56346965 are eQTL sites for the genes GREM2 and NAB1 respectively. Functional annotation of GREM2 and NAB1 illustrated their involvement in BMP signaling pathway and in bone development. We also replicated three previously reported loci: 5q14.3 (rs10037512, discovery p=3.09×10(-6), FHS p=8.50×10(-3), GEFOS p=1.23×10(-24) for femoral neck BMD, nearest gene MEF2C), 6q25.1 (rs3020340, discovery p=1.64×10(-6), GEFOS p=1.69×10(-3) for SPN-BMD, nearest gene ESR1) and 7q21.3 (rs13310130, discovery p=8.79×10(-7), GEFOS p=2.61×10(-7) for spine BMD, nearest gene SHFM1). Our findings provide additional insights that further enhance our understanding of bone development, osteoporosis, and fracture pathogenesis.

Collaboration


Dive into the Shu Ran's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yong Lin

University of Shanghai for Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Rong Hai

University of Shanghai for Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Ying-Ying Han

University of Shanghai for Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xue-Zhen Zhu

University of Shanghai for Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Tie-Lin Yang

Xi'an Jiaotong University

View shared research outputs
Top Co-Authors

Avatar

Christopher J. Papasian

University of Missouri–Kansas City

View shared research outputs
Researchain Logo
Decentralizing Knowledge