Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shu-Wei Yang is active.

Publication


Featured researches published by Shu-Wei Yang.


Science Translational Medicine | 2016

TarO-specific inhibitors of wall teichoic acid biosynthesis restore β-lactam efficacy against methicillin-resistant staphylococci

Sang Ho Lee; Hao Wang; Labroli M; Sandra Koseoglu; Zuck P; Todd Mayhood; Charles Gill; Paul A. Mann; Xinwei Sher; Sookhee Ha; Shu-Wei Yang; Mihirbaran Mandal; Christine Yang; Lianzhu Liang; Zheng Tan; Paul Tawa; Hou Y; Reshma Kuvelkar; DeVito K; Wen X; Jianying Xiao; Batchlett M; Carl J. Balibar; Jenny Liu; Nicholas J. Murgolo; Charles G. Garlisi; Payal R. Sheth; Amy M. Flattery; Jing Su; Christopher M. Tan

New inhibitors of wall teichoic acid biosynthesis restore susceptibility of drug-resistant staphylococci to β-lactam antibiotics. Addressing antibiotic resistance with nonantibiotic adjuvants Coupled with the crisis in antibiotic drug resistance is a dearth of mechanistically new classes of antibacterial agents. One possible solution to this problem is to improve the efficacy of existing antibiotics against otherwise resistant bacteria using a combination agent approach. Lee et al. now describe just such a combination agent strategy to resuscitate the efficacy of β-lactam antibiotics. They identify nonantibiotic adjuvants termed tarocins that restore the killing activity of β-lactams against methicillin-resistant staphylococci, thereby enabling the application of β-lactams to treat Gram-positive bacterial infections. The widespread emergence of methicillin-resistant Staphylococcus aureus (MRSA) has dramatically eroded the efficacy of current β-lactam antibiotics and created an urgent need for new treatment options. We report an S. aureus phenotypic screening strategy involving chemical suppression of the growth inhibitory consequences of depleting late-stage wall teichoic acid biosynthesis. This enabled us to identify early-stage pathway-specific inhibitors of wall teichoic acid biosynthesis predicted to be chemically synergistic with β-lactams. We demonstrated by genetic and biochemical means that each of the new chemical series discovered, herein named tarocin A and tarocin B, inhibited the first step in wall teichoic acid biosynthesis (TarO). Tarocins do not have intrinsic bioactivity but rather demonstrated potent bactericidal synergy in combination with broad-spectrum β-lactam antibiotics against diverse clinical isolates of methicillin-resistant staphylococci as well as robust efficacy in a murine infection model of MRSA. Tarocins and other inhibitors of wall teichoic acid biosynthesis may provide a rational strategy to develop Gram-positive bactericidal β-lactam combination agents active against methicillin-resistant staphylococci.


Bioorganic & Medicinal Chemistry Letters | 2012

Discovery of orally active pyrazoloquinolines as potent PDE10 inhibitors for the management of schizophrenia.

Shu-Wei Yang; Jennifer Smotryski; William T. McElroy; Zheng Tan; Ginny D. Ho; Deen Tulshian; William J. Greenlee; Mario Guzzi; Xiaoping Zhang; Deborra Mullins; Li Xiao; Alan Hruza; Tze-Ming Chan; Diane Rindgen; Carina J. Bleickardt; Robert Hodgson

A series of pyrazoloquinoline analogs have been synthesized and shown to bind to PDE10 with high affinity. From the SAR study and our lead optimization efforts, compounds 16 and 27 were found to possess potent oral antipsychotic activity in the MK-801 induced hyperactive rat model.


Bioorganic & Medicinal Chemistry Letters | 2012

Pyrazoloquinolines as PDE10A inhibitors: discovery of a tool compound.

William T. McElroy; Zheng Tan; Kallol Basu; Shu-Wei Yang; Jennifer Smotryski; Ginny D. Ho; Deen Tulshian; William J. Greenlee; Deborra Mullins; Mario Guzzi; Xiaoping Zhang; Carina J. Bleickardt; Robert Hodgson

A series of pyrazoloquinolines, possessing (hetero)arylhydroxymethyl substituents at the quinoline C-4 position were evaluated as PDE10A inhibitors. Among these, methylpyrimidyl analogue 15 was identified as having good rodent and monkey exposure, and a MED of 10 mg/kg in an in vivo model.


Bioorganic & Medicinal Chemistry Letters | 2012

The discovery of potent, selective, and orally active pyrazoloquinolines as PDE10A inhibitors for the treatment of Schizophrenia.

Ginny D. Ho; Shu-Wei Yang; Jennifer Smotryski; Ana Bercovici; Terry Nechuta; Elizabeth M. Smith; William T. McElroy; Zheng Tan; Deen Tulshian; Brian A. McKittrick; William J. Greenlee; Alan Hruza; Li Xiao; Diane Rindgen; Deborra Mullins; Mario Guzzi; Xiaoping Zhang; Carina J. Bleickardt; Robert Hodgson

High-throughput screening identified a series of pyrazoloquinolines as PDE10A inhibitors. The SAR development led to the discovery of compound 27 as a potent, selective, and orally active PDE10A inhibitor. Compound 27 inhibits MK-801 induced hyperactivity at 3mg/kg with an ED(50) of 4mg/kg and displays a ∼6-fold separation between the ED(50) for inhibition of MK-801 induced hyperactivity and hypolocomotion in rats.


Bioorganic & Medicinal Chemistry Letters | 2011

Structure–activity relationships of 2,4-diphenyl-1H-imidazole analogs as CB2 receptor agonists for the treatment of chronic pain

Shu-Wei Yang; Jennifer Smotryski; Julius J. Matasi; Ginny D. Ho; Deen Tulshian; William J. Greenlee; Rossella Brusa; Massimiliano Beltramo; Kathleen Cox

A series of 2,4-diphenyl-1H-imidazole analogs have been synthesized and displayed potent human CB2 agonist activity. Many of these analogs showed high functional selectivity over human CB1 receptors. The syntheses, structure-activity relationships, and selected pharmacokinetic data of these analogs are described.


Bioorganic & Medicinal Chemistry Letters | 2014

Bioavailable pyrrolo-benzo-1,4-diazines as Nav1.7 sodium channel blockers for the treatment of pain

Shu-Wei Yang; Ginny D. Ho; Deen Tulshian; Ana Bercovici; Zheng Tan; Jennifer Hanisak; Stephanie Brumfield; Julius J. Matasi; Xianfeng Sun; Samuel A. Sakwa; R. Jason Herr; Xiaoping Zhou; Terry Bridal; Mark O. Urban; Jeffrey Vivian; Diane Rindgen; Steve Sorota

A series of pyrrolo-benzo-1,4-diazine analogs have been synthesized to improve the profile of the previous lead compound 1. The syntheses, structure-activity relationships, and selected pharmacokinetic data of these analogs are described. The optimization efforts allowed the identification of 33, a quinoline amide exhibiting potent Na(v)1.7 inhibitory activity and moderate selectivity over Na(v)1.5. Compound 33 displayed anti-nociceptive oral efficacy in a rat CFA inflammatory pain model at 100 mpk and in a rat spinal nerve ligation neuropathic pain model with an EC50 75 μM.


Bioorganic & Medicinal Chemistry Letters | 2014

Discovery of pyrrolo-benzo-1,4-diazines as potent Nav1.7 sodium channel blockers

Ginny D. Ho; Deen Tulshian; Ana Bercovici; Zheng Tan; Jennifer Hanisak; Stephanie Brumfield; Julius J. Matasi; Charles R. Heap; William G. Earley; Brandy Courneya; R. Jason Herr; Xiaoping Zhou; Terry Bridal; Diane Rindgen; Steve Sorota; Shu-Wei Yang

A series of pyrrolo-benzo-1,4-diazine analogs have been synthesized and displayed potent Nav1.7 inhibitory activity and moderate selectivity over Nav1.5. The syntheses, structure-activity relationships, and selected pharmacokinetic data of these analogs are described. Compound 41 displayed anti-nociceptive efficacy in the rat CFA pain model at 100 mpk oral dosing.


Bioorganic & Medicinal Chemistry Letters | 2016

Discovery of potent wall teichoic acid early stage inhibitors.

Marc Labroli; John P. Caldwell; Christine Yang; Sang Ho Lee; Hao Wang; Sandra Koseoglu; Paul A. Mann; Shu-Wei Yang; Jing Xiao; Charles G. Garlisi; Christopher M. Tan; Terry Roemer; Jing Su

The widespread emergence of methicillin-resistant Staphylococcus aureus (MRSA) has dramatically eroded the efficacy of current β-lactam antibiotics and created an urgent need for novel treatment options. Using an S. aureus phenotypic screening strategy, we have identified small molecule early stage wall teichoic acid (WTA) pathway-specific inhibitors predicted to be chemically synergistic with β-lactams. These previously disclosed inhibitors, termed tarocins, demonstrate by genetic and biochemical means inhibition of TarO, the first step in WTA biosynthesis. Tarocins demonstrate potent bactericidal synergy in combination with broad spectrum β-lactam antibiotics across diverse clinical isolates of methicillin-resistant Staphylococci. The synthesis and structure-activity relationships (SAR) of a tarocin series will be detailed. Tarocins and other WTA inhibitors may provide a rational strategy to develop Gram-positive bactericidal β-lactam combination agents active against methicillin-resistant Staphylococci.


Bioorganic & Medicinal Chemistry Letters | 2016

Benzimidazole analogs as WTA biosynthesis inhibitors targeting methicillin resistant Staphylococcus aureus.

Shu-Wei Yang; Jianping Pan; Christine Yang; Marc Labroli; Weidong Pan; John P. Caldwell; Sookhee Ha; Sandra Koseoglu; Jing C. Xiao; Todd Mayhood; Payal R. Sheth; Charles G. Garlisi; Jin Wu; Sang Ho Lee; Hao Wang; Christopher M. Tan; Terry Roemer; Jing Su

A series of benzimidazole analogs have been synthesized to improve the profile of the previous lead compounds tarocin B and 1. The syntheses, structure-activity relationships, and selected biochemical data of these analogs are described. The optimization efforts allowed the identification of 21, a fluoro-substituted benzimidazole, exhibiting potent TarO inhibitory activity and typical profile for a wall teichoic acid (WTA) biosynthesis inhibitor. Compound 21 displayed a potent synergistic and bactericidal effect in combination with imipenem against diverse methicillin-resistant Staphylococci.


Journal of Medicinal Chemistry | 2017

Can We Make Small Molecules Lean? Optimization of a Highly Lipophilic TarO Inhibitor

Mihirbaran Mandal; Zheng Tan; Christina B. Madsen-Duggan; Alexei V. Buevich; John P. Caldwell; Reynalda Dejesus; Amy M. Flattery; Charles G. Garlisi; Charles Gill; Sookhee Ha; Ginny D. Ho; Sandra Koseoglu; Marc Labroli; Kallol Basu; Sang Ho Lee; Lianzhu Liang; Jenny Liu; Todd Mayhood; Debra Mcguinness; David G. McLaren; Xiujuan Wen; Emma R. Parmee; Diane Rindgen; Terry Roemer; Payal R. Sheth; Paul Tawa; James R. Tata; Christine Yang; Shu-Wei Yang; Li Xiao

We describe our optimization efforts to improve the physicochemical properties, solubility, and off-target profile of 1, an inhibitor of TarO, an early stage enzyme in the biosynthetic pathway for wall teichoic acid (WTA) synthesis. Compound 1 displayed a TarO IC50 of 125 nM in an enzyme assay and possessed very high lipophilicity (clogP = 7.1) with no measurable solubility in PBS buffer. Structure-activity relationship (SAR) studies resulted in a series of compounds with improved lipophilic ligand efficiency (LLE) consistent with the reduction of clogP. From these efforts, analog 9 was selected for our initial in vivo study, which in combination with subefficacious dose of imipenem (IPM) robustly lowered the bacterial burden in a neutropenic Staphylococci murine infection model. Concurrent with our in vivo optimization effort using 9, we further improved LLE as exemplified by a much more druglike analog 26.

Collaboration


Dive into the Shu-Wei Yang's collaboration.

Researchain Logo
Decentralizing Knowledge