Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shu Wen is active.

Publication


Featured researches published by Shu Wen.


Journal of extracellular vesicles | 2015

Optimized exosome isolation protocol for cell culture supernatant and human plasma

Richard J. Lobb; Melanie Becker; Shu Wen Wen; Christina S.F. Wong; Adrian P. Wiegmans; Antoine Leimgruber; Andreas Möller

Extracellular vesicles represent a rich source of novel biomarkers in the diagnosis and prognosis of disease. However, there is currently limited information elucidating the most efficient methods for obtaining high yields of pure exosomes, a subset of extracellular vesicles, from cell culture supernatant and complex biological fluids such as plasma. To this end, we comprehensively characterize a variety of exosome isolation protocols for their efficiency, yield and purity of isolated exosomes. Repeated ultracentrifugation steps can reduce the quality of exosome preparations leading to lower exosome yield. We show that concentration of cell culture conditioned media using ultrafiltration devices results in increased vesicle isolation when compared to traditional ultracentrifugation protocols. However, our data on using conditioned media isolated from the Non-Small-Cell Lung Cancer (NSCLC) SK-MES-1 cell line demonstrates that the choice of concentrating device can greatly impact the yield of isolated exosomes. We find that centrifuge-based concentrating methods are more appropriate than pressure-driven concentrating devices and allow the rapid isolation of exosomes from both NSCLC cell culture conditioned media and complex biological fluids. In fact to date, no protocol detailing exosome isolation utilizing current commercial methods from both cells and patient samples has been described. Utilizing tunable resistive pulse sensing and protein analysis, we provide a comparative analysis of 4 exosome isolation techniques, indicating their efficacy and preparation purity. Our results demonstrate that current precipitation protocols for the isolation of exosomes from cell culture conditioned media and plasma provide the least pure preparations of exosomes, whereas size exclusion isolation is comparable to density gradient purification of exosomes. We have identified current shortcomings in common extracellular vesicle isolation methods and provide a potential standardized method that is effective, reproducible and can be utilized for various starting materials. We believe this method will have extensive application in the growing field of extracellular vesicle research.


Cancer Research | 2016

The biodistribution and immune suppressive effects of breast cancer-derived exosomes

Shu Wen Wen; Jaclyn Sceneay; Luize G. Lima; Christina S.F. Wong; Melanie Becker; Sophie Krumeich; Richard J. Lobb; Vanessa Castillo; Ke Ni Wong; Sarah Ellis; Belinda S. Parker; Andreas Möller

Small membranous secretions from tumor cells, termed exosomes, contribute significantly to intercellular communication and subsequent reprogramming of the tumor microenvironment. Here, we use optical imaging to determine that exogenously administered fluorescently labeled exosomes derived from highly metastatic murine breast cancer cells distributed predominantly to the lung of syngeneic mice, a frequent site of breast cancer metastasis. At the sites of accumulation, exosomes were taken up by CD45+ bone marrow-derived cells. Subsequent long-term conditioning of naïve mice with exosomes from highly metastatic breast cancer cells revealed the accumulation of myeloid-derived suppressor cells in the lung and liver. This favorable immune suppressive microenvironment was capable of promoting metastatic colonization in the lung and liver, an effect not observed from exosomes derived from nonmetastatic cells and liposome control vesicles. Furthermore, we determined that breast cancer exosomes directly suppressed T-cell proliferation and inhibited NK cell cytotoxicity, and hence likely suppressed the anticancer immune response in premetastatic organs. Together, our findings provide novel insight into the tissue-specific outcomes of breast cancer-derived exosome accumulation and their contribution to immune suppression and promotion of metastases. Cancer Res; 76(23); 6816-27. ©2016 AACR.


Cancer Cell International | 2010

Targeting the angiotensin II type 2 receptor (AT2R) in colorectal liver metastases

Eleanor I Ager; Way W Chong; Shu Wen Wen; Christopher Christophi

BackgroundBlockade of the angiotensin (ANG) II type 1 receptor (AT1R) inhibits tumour growth in several cancers, including colorectal cancer (CRC) liver metastases. While AT1R blockade has been extensively studied, the potential of targeting the antagonistically acting AT2R in cancer has not been investigated. This study examined the effect of AT2R activation with the agonist CGP42112A in a mouse model of CRC liver metastases.ResultsIn vitro, mouse CRC cell (MoCR) proliferation was inhibited by treatment with CGP42112A in a dose dependent manner while apoptosis was increased. Immunofluorescent staining for key signalling and secondary messengers, PLA2 and iNOS, were also increased by CGP42112A treatment in vitro. Immunohistochemical staining for proliferation (PCNA) and the apoptosis (active caspase 3) markers confirmed a CGP42112A-associated inhibition of proliferation and induction of apoptosis of mouse CRC cells (MoCR) in vivo. However, angiogenesis and vascular endothelial growth factor (VEGF) appeared to be increased by CGP42112A treatment in vivo. This increase in VEGF secretion by MoCRs was confirmed in vitro. Despite this apparent pro-angiogenic effect, a syngenic orthotopic mouse model of CRC liver metastases showed a reduction in liver to body weight ratio, an indication of tumour burden, following CGP42112A treatment compared to untreated controls.ConclusionsThese results suggest that AT2R activation might provide a novel target to inhibit tumour growth. Its potential to stimulate angiogenesis could be compensated by combination with anti-angiogenic agents.


Cancer Biology & Therapy | 2013

Bimodal role of Kupffer cells during colorectal cancer liver metastasis.

Shu Wen Wen; Eleanor I Ager; Christopher Christophi

Kupffer cells (KCs) are resident liver macrophages that play a crucial role in liver homeostasis and in the pathogenesis of liver disease. Evidence suggests KCs have both stimulatory and inhibitory functions during tumor development but the extent of these functions remains to be defined. Using KC depletion studies in an orthotopic murine model of colorectal cancer (CRC) liver metastases we demonstrated the bimodal role of KCs in determining tumor growth. KC depletion with gadolinium chloride before tumor induction was associated with an increased tumor burden during the exponential growth phase. In contrast, KC depletion at the late stage of tumor growth (day 18) decreased liver tumor load compared with non-depleted animals. This suggests KCs exhibit an early inhibitory and a later stimulatory effect. These two opposing functions were associated with changes in iNOS and VEGF expression as well as T-cell infiltration. KC depletion at day 18 increased numbers of CD3+ T cells and iNOS-expressing infiltrating cells in the tumor, but decreased the number of VEGF-expressing infiltrating cells. These alterations may be responsible for the observed reduction in tumor burden following depletion of pro-tumor KCs at the late stage of metastatic growth. Taken together, our results indicate that the bimodal role of KC activity in liver tumors may provide the key to timing immunomodulatory intervention for the treatment of CRC liver metastases.


Oncotarget | 2016

RAD51 inhibition in triple negative breast cancer cells is challenged by compensatory survival signaling and requires rational combination therapy

Adrian P. Wiegmans; Mariska Miranda; Shu Wen Wen; Fares Al-Ejeh; Andreas Möller

The molecular rationale to induce synthetic lethality, by targeting defective homologous recombination repair in triple negative breast cancer (TNBC), has proven to have several shortcomings. Not meeting the expected minimal outcomes in clinical trials has highlighted common clinical resistance mechanisms including; increased expression of the target gene PARP1, increased expression or reversion mutation of BRCA1, or up-regulation of the compensatory homologous recombination protein RAD51. Indeed, RAD51 has been demonstrated to be an alternative synthetic lethal target in BRCA1-mutated cancers. To overcome selective pressure on DNA repair pathways, we examined new potential targets within TNBC that demonstrate synthetic lethality in association with RAD51 depletion. We confirmed complementary targets of PARP1/2 and DNA-PK as well as a new synthetic lethality combination with p38. p38 is considered a relevant target in breast cancer, as it has been implicated in resistance to chemotherapy, including tamoxifen. We show that the combination of targeting RAD51 and p38 inhibits cell proliferation both in vitro and in vivo, which was further enhanced by targeting of PARP1. Analysis of the molecular mechanisms revealed that depletion of RAD51 increased ERK1/2 and p38 signaling. Our results highlight a potential compensatory mechanism via p38 that limits DNA targeted therapy.


Gut microbes | 2017

An unexplored brain-gut microbiota axis in stroke

Shu Wen Wen; Connie Hoi Yee Wong

ABSTRACT Microbiota research, in particular that of the gut, has recently gained much attention in medical research owing to technological advances in metagenomics and metabolomics. Despite this, much of the research direction has focused on long-term or chronic effects of microbiota manipulation on health and disease. In this addendum, we reflect on our recent publication that reported findings addressing a rather unconventional hypothesis. Bacterial pneumonia is highly prevalent and is one of the leading contributors to stroke morbidity and mortality worldwide. However, microbiological cultures of samples taken from stroke patient with a suspected case of pneumonia often return with a negative result. Therefore, we proposed that post-stroke infection may be due to the presence of anaerobic bacteria, possibly those originated from the host gut microbiota. Supporting this, we showed that stroke promotes intestinal barrier breakdown and robust microbiota changes, and the subsequent translocation of selective bacterial strain from the host gut microbiota to peripheral tissues (i.e. lung) induces post-stroke infections. Our findings were further supported by various elegant studies published in the past 12 months. Here, we discuss and provide an overview of our key findings, supporting studies, and the implications for future advances in stroke research.


American Journal of Human Genetics | 2017

Long Noncoding RNAs CUPID1 and CUPID2 Mediate Breast Cancer Risk at 11q13 by Modulating the Response to DNA Damage

Joshua A. Betts; Mahdi Moradi Marjaneh; Fares Al-Ejeh; Yi Chieh Lim; Wei Shi; Haran Sivakumaran; Romain Tropée; Ann-Marie Patch; Michael B. Clark; Nenad Bartonicek; Adrian P. Wiegmans; Kristine M. Hillman; Susanne Kaufmann; Amanda L. Bain; Brian S. Gloss; Joanna Crawford; Stephen Kazakoff; Shivangi Wani; Shu Wen Wen; Bryan W. Day; Andreas Möller; Nicole Cloonan; John V. Pearson; Melissa A. Brown; Timothy R. Mercer; Nicola Waddell; Kum Kum Khanna; Eloise Dray; Marcel E. Dinger; Stacey L. Edwards

Breast cancer risk is strongly associated with an intergenic region on 11q13. We have previously shown that the strongest risk-associated SNPs fall within a distal enhancer that regulates CCND1. Here, we report that, in addition to regulating CCND1, this enhancer regulates two estrogen-regulated long noncoding RNAs, CUPID1 and CUPID2. We provide evidence that the risk-associated SNPs are associated with reduced chromatin looping between the enhancer and the CUPID1 and CUPID2 bidirectional promoter. We further show that CUPID1 and CUPID2 are predominantly expressed in hormone-receptor-positive breast tumors and play a role in modulating pathway choice for the repair of double-strand breaks. These data reveal a mechanism for the involvement of this region in breast cancer.


PLOS ONE | 2015

Spleen Volume Variation in Patients with Locally Advanced Non-Small Cell Lung Cancer Receiving Platinum-Based Chemo-Radiotherapy

Shu Wen Wen; Sarah Everitt; Justin Bedő; Marine Chabrot; David Ball; Benjamin Solomon; Michael MacManus; Rodney J. Hicks; Andreas Möller; Antoine Leimgruber

There is renewed interest in the immune regulatory role of the spleen in oncology. To date, very few studies have examined macroscopic variations of splenic volume in the setting of cancer, prior to or during therapy, especially in humans. Changes in splenic volume may be associated with changes in splenic function. The purpose of this study was to investigate variations in spleen volume in NSCLC patients during chemo-radiotherapy. Sixty patients with stage I-IIIB NSCLC underwent radiotherapy (60Gy/30 fractions) for six weeks with concomitant carboplatin/paclitaxel (Ca/P; n = 32) or cisplatin/etoposide (Ci/E; n = 28). A baseline PET/CT scan was performed within 2 weeks prior to treatment and during Weeks 2 and 4 of chemo-radiotherapy. Spleen volume was measured by contouring all CT slices. Significant macroscopic changes in splenic volume occurred early after the commencement of treatment. A significant decrease in spleen volume was observed for 66% of Ca/P and 79% of Ci/E patients between baseline and Week 2. Spleen volume was decreased by 14.2% for Ca/P (p<0.001) and 19.3% for Ci/E (p<0.001) patients. By Week 4, spleen volume was still significantly decreased for Ca/P patients compared to baseline, while for Ci/E patients, spleen volume returned to above baseline levels. This is the first report demonstrating macroscopic changes in the spleen in NSCLC patients undergoing radical chemo-radiotherapy that can be visualized by non-invasive imaging.


Journal of Investigative Surgery | 2013

Comparison of Two Syngeneic Orthotopic Murine Models of Pancreatic Adenocarcinoma

Mehrdad Nikfarjam; Dannel Yeo; Hong He; Graham S. Baldwin; Theodora Fifis; Patricia Costa; Bryan Tan; Eunice Yang; Shu Wen Wen; Christopher Christophi

ABSTRACT Background: Pancreatic adenocarcinoma has an extremely poor prognosis. The use of appropriate in vivo models is essential in devising methods to improve treatment outcomes. Methods: A pancreatic adenocarcinoma model based on tumor injection into the pancreatic head was compared with a pancreatic tail injection model in C57/BL6 mice. The murine pancreatic adenocarcinoma cell line PAN02, dispersed in MatrigelTM, was used for tumor induction. Results: Tumors developed in all animals in both models. Tumor size was more consistent within the pancreatic tail group at 20 days following induction, with no evidence of metastatic disease. Animals in the pancreatic head injection group showed signs of reduced health by 20 days following injection and developed jaundice. Microscopic liver metastases were noted in some of these animals at this time point. The overall survival of animals at 40 days following tumor induction was significantly lower in the pancreatic head injection group (0% vs. 35%; p < .001). Multiple liver metastases were noted in five of 10 (50%) animals in the head injection group, without evidence of peritoneal metastases. In the pancreatic tail injection group, 18 of 20 (90%) animals had multiple peritoneal metastases, and nine of 20 (45%) animals had evidence of isolated liver deposits. Tumors in both regions of the pancreas had similar histologic characteristics, with a dense fibrotic stroma at the interface between the tumor and the normal pancreas. Conclusion: Pancreatic head and tail orthotopic cancer models produce consistent tumors, but the patterns of tumor spread and survival differ according to the site of injection.


Cancer Biology & Therapy | 2013

The renin angiotensin system regulates Kupffer cells in colorectal liver metastases

Shu Wen Wen; Eleanor I Ager; Jaclyn Neo; Christopher Christophi

Blockade of the renin angiotensin system (RAS) can inhibit tumor growth and this may be mediated via undefined immunomodulatory actions. This study investigated the effects of RAS blockade on liver macrophages (Kupffer cells; KCs) in an orthotopic murine model of colorectal cancer (CRC) liver metastases. Here we showed that pharmacological targeting of the RAS [ANG II (31.25 µg/kg/h i.p.), ANG-(1–7) (24 µg/kg/h i.p.) or the ACE inhibitor; captopril (750 mg/kg/d i.p.)] altered endogenous KC numbers in the tumor-bearing liver throughout metastatic growth. Captopril, and to a lesser extent ANG-(1–7), increased KC numbers in the liver but not tumor. KCs were found to express the key RAS components: ACE and AT1R. Treatment with captopril and ANG II increased the number of AT1R-expressing KCs, although total KC numbers were not affected by ANG II. Captopril (0.1 µM) also increased macrophage invasion in vitro. Additionally, captopril was administered with KC depletion before tumor induction (day 0) or at established metastatic growth (day 18) using gadolinium chloride (GdCl3; 20 mg/kg). Livers were collected at day 21 and quantitative stereology used as a measure of tumor burden. Captopril reduced growth of CRC liver metastases. However, when captopril was combined with early KC depletion (day 0) tumor growth was significantly increased compared with captopril alone. In contrast, late KC depletion (day 18) failed to influence the anti-tumor effects of captopril. The result of these studies suggests that manipulation of the RAS can alter KC numbers and may subsequently influence progression of CRC liver metastases.

Collaboration


Dive into the Shu Wen's collaboration.

Top Co-Authors

Avatar

Andreas Möller

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adrian P. Wiegmans

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard J. Lobb

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Christina S.F. Wong

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Fares Al-Ejeh

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Way W Chong

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar

Amanda L. Bain

QIMR Berghofer Medical Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge