Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shu-xin Zhang is active.

Publication


Featured researches published by Shu-xin Zhang.


Journal of Neurotrauma | 2002

Increased Protein Oxidation and Decreased Creatine Kinase BB Expression and Activity after Spinal Cord Contusion Injury

Marina Aksenova; D. Allan Butterfield; Shu-xin Zhang; Mark Underwood; James W. Geddes

Traumatic injury to the spinal cord triggers several secondary effects, including oxidative stress and compromised energy metabolism, which play a major role in biochemical and pathological changes in spinal cord tissue. Free radical generation and lipid peroxidation have been shown to be early events subsequent to spinal cord injury. In the present study, we demonstrated that protein oxidation increases in rat spinal cord tissue after experimental injury. As early as h after injury, the level of protein carbonyls at the injury epicenter was significantly higher than in control (169%, p < 0.05) and increased gradually over the next 4 weeks to 1260% of control level. Both caudal and rostral parts of the injured spinal cord demonstrated a mild increase of protein carbonyls by 4 weeks postinjury (135-138%, p < 0.05). Immunocytochemical analysis of protein carbonyls in the spinal cord cross-sections showed increased protein carbonyl immunoreactivity in the epicenter section compared to rostral and caudal sections of the same animal or control laminectomy animals. Increased protein carbonyl formation in damaged spinal cord tissue was associated with changes in activity and expression of an oxidative sensitive enzyme, creatine kinase BB, which plays an important role in the maintenance of ATP level in the CNS tissue. Damage to CK function in the CNS may severely aggravate the impairment of energy metabolism. The results of our study indicate that events associated with oxidative damage are triggered immediately after spinal cord trauma but continue to occur over the subsequent 4 weeks. These results suggest that antioxidant therapeutic strategies may be beneficial to lessen the consequences of the injury and potentially improve the restoration of neurological function.


Journal of Neuropathology and Experimental Neurology | 1998

Neuropil threads are collinear with MAP2 immunostaining in neuronal dendrites of Alzheimer brain.

J.W Ashford; Soultanian Ns; Shu-xin Zhang; James W. Geddes

Abstract. Alzheimer disease (AD) neuropathology includes neuropil threads (NTs) and neurofibrillary tangles (NFTs). In tangle-bearing neurons, the normal cytoskeleton is severely disrupted and replaced with paired helical filament (PHF) aggregates of aberrantly phosphorylated microtubule-associated protein tau. In this study, double-label immunocytochemistry was used to clarify the relationship between the appearance of neurofibrillary pathology (NTs and NFTs) and the loss of normal cytoskeletal components, such as microtubule-associated protein 2 (MAP2) in 13 AD cases and 6 nondemented elderly control individuals. Brain areas examined included neocortex (cingulate, motor, and inferior parietal cortices), hippocampus, and entorhinal cortex. In mildly affected neurons, PHF-1 immunostained NTs were found in dendrites, frequently at dendritic branch points, and were adjacent to MAP2 immunostaining. In more severely affected neurons, the PHF-1 immunoreactivity occupied distinct dendritic segments and appeared to displace MAP2. Interspersed MAP2 immunopositive dendritic segments were often beaded in appearance. In all instances where dendrites with NTs could be traced back to the soma, the soma also contained PHF-1 immunostained fibrils in various stages of NFT formation. The results suggest that PHFs gradually displace normal microtubules in dendrites, and cause degeneration of dendritic segments between NTs.


Journal of Neurotrauma | 2003

Evaluation of conditions for calpain inhibition in the rat spinal cord: effective postinjury inhibition with intraspinal MDL28170 microinjection.

Shu-xin Zhang; Vimala Bondada; James W. Geddes

Calpains (calcium-activated cysteine proteases) are strongly implicated in the secondary damage that follows contusion injury to the spinal cord. Calpains are activated within a few minutes following injury and their elevated activity persists for 24 h, thereby providing a reasonable window of opportunity for postinjury inhibition. Previous studies demonstrated decreased axonal damage and neurofilament proteolysis with postinjury intravenous administration of relatively low concentrations of the calpain inhibitors leupeptin, E-64-D, and calpeptin. We sought to determine if conditions under which calpain inhibitors were administered in previous studies resulted in effective calpain inhibition, and to identify conditions that result in significant calpain inhibition following spinal cord injury. Contusive spinal cord injury was produced in female Long-Evans rats using the NYU impactor at the 12.5-25-mm height setting. The results demonstrate that intravenous administration of 1 mg/kg E-64-D or 250 micro g/kg calpeptin does not inhibit total calpain activity in the rat spinal cord, measured using a BODIPY-FL labeled casein assay. Intravenous administration of MDL28170 (20 mg/kg) resulted in mild calpain inhibition and a modest decrease in the proteolysis of calpain substrates alpha-spectrin and MAP2. Intraspinal microinjection of 50 nmoles/19 micro g MDL28170, either 30 min prior to or 20 min following contusion injury, resulted in a more robust inhibition of total calpain activity and greater attenuation of alpha-spectrin breakdown and MAP2 proteolysis. The decreased proteolysis persisted 24 h postinjury. Together, the results demonstrate that direct microinjection of the calpain inhibitor MDL28170 is more effective than intravenous infusion in reducing calpain activity and decreasing the injury-induced proteolysis of calpain substrates.


Neural Regeneration Research | 2013

Role of endogenous Schwann cells in tissue repair after spinal cord injury.

Shu-xin Zhang; Fengfa Huang; Mary Gates; Eric G. Holmberg

Schwann cells are glial cells of peripheral nervous system, responsible for axonal myelination and ensheathing, as well as tissue repair following a peripheral nervous system injury. They are one of several cell types that are widely studied and most commonly used for cell transplantation to treat spinal cord injury, due to their intrinsic characteristics including the ability to secrete a variety of neurotrophic factors. This mini review summarizes the recent findings of endogenous Schwann cells after spinal cord injury and discusses their role in tissue repair and axonal regeneration. After spinal cord injury, numerous endogenous Schwann cells migrate into the lesion site from the nerve roots, involving in the construction of newly formed repaired tissue and axonal myelination. These invading Schwann cells also can move a long distance away from the injury site both rostrally and caudally. In addition, Schwann cells can be induced to migrate by minimal insults (such as scar ablation) within the spinal cord and integrate with astrocytes under certain circumstances. More importantly, the host Schwann cells can be induced to migrate into spinal cord by transplantation of different cell types, such as exogenous Schwann cells, olfactory ensheathing cells, and bone marrow-derived stromal stem cells. Migration of endogenous Schwann cells following spinal cord injury is a common natural phenomenon found both in animal and human, and the myelination by Schwann cells has been examined effective in signal conduction electrophysiologically. Therefore, if the inherent properties of endogenous Schwann cells could be developed and utilized, it would offer a new avenue for the restoration of injured spinal cord.


Brain Research | 2011

Scar ablation combined with LP/OEC transplantation promotes anatomical recovery and P0-positive myelination in chronically contused spinal cord of rats.

Shu-xin Zhang; Fengfa Huang; Mary Gates; Eric G. Holmberg

We have successfully removed an existing glial scar in chronically contused rat spinal cord using a rose Bengal-based phototoxic method. The purpose of this study is to examine if scar ablation benefits the anatomical recovery by cell/tissue transplantation, and thus provides a more permissive physical and biochemical environment for axonal growth, which may lead to functional recovery. Immediately after scar ablation, we transplanted lamina propria (LP) of the olfactory mucosa alone or in combination with cultured olfactory ensheathing cells (OEC) into the lesion cavity 6 weeks after contusion injury (NYU impactor device, 25 mm height setting) at spinal cord segment T10 of adult female Long-Evans rats. Sixteen weeks after scar ablation and transplantation, we found that the initial repaired tissue significantly expanded, companied by remarkable reduction or disappearance of the lesion cavity and integration of repaired tissue with the spared tissue, thus resulting in histological repair of damaged cord tissue at the injury epicenter. Glial scar reformation was effectively prevented after ablation due to the tissue repair. In addition, at the injury epicenter P0 (myelin glycoprotein P-zero)-positive myelination formed by Schwann cells, which are known to myelinate regenerating and demyelinated axons, were significantly increased in number compared with the control animals. However, when evaluated with BBB open-field scale a significant improvement of locomotor function was not observed in this study; the possible reasons were discussed.


Experimental Neurology | 2008

Statins decrease chondroitin sulfate proteoglycan expression and acute astrocyte activation in central nervous system injury

Eric G. Holmberg; Shu-xin Zhang; Patrick Sarmiere; Bridget Kluge; Jason T. White; Suzanne Doolen

Statins elicit numerous favorable effects on central nervous system (CNS) injury, including inhibition of the rhoA/ROCK pathway. In the present study, we show that statins decrease acute astrocyte activation in CNS injury, and decrease chondroitin sulfate proteoglycan (CSPG) levels in astrocyte cultures as well as CNS injury. CSPG levels decreased by up to 45% in simvastatin-treated astrocyte cultures compared to control cultures. In simvastatin-treated animals, CSPG levels declined by 60% 8 days after brain stab injury, and by 62-64% 4 weeks after spinal cord injury (SCI). Glial fibrillary acid protein (GFAP) levels decreased in brain stab at 8 days after surgery/intervention, suggesting that statins produce a decrease in astrocyte activation. Attenuation of astrocyte activation may contribute to the decline in CSPG levels. However, there are likely other contributing factors, since GFAP levels were not a contributing factor in the decline of CSPG levels in astrocyte cultures. Robust locomotor improvements were not observed with any treatment. The numerous beneficial effects of statins on CNS injury render them an attractive candidate in the treatment of CNS injury.


Journal of Neuroscience Methods | 2010

Tail nerve electrical stimulation induces body weight-supported stepping in rats with spinal cord injury.

Shu-xin Zhang; Fengfa Huang; Mary Gates; Jason White; Eric G. Holmberg

Walking or stepping has been considered the result from the activation of the central pattern generator (CPG). In most patients with spinal cord injury (SCI) the CPG is undamaged. To date, there are no noninvasive approaches for activating the CPG. Recently we developed a noninvasive technique, tail nerve electrical stimulation (TANES), which can induce positive hind limb movement of SCI rats. The purpose of this study is to introduce the novel technique and examine the effect of TANES on CPG activation. A 25 mm contusion injury was produced at spinal cord T10 of female, adult Long-Evans rats by using the NYU impactor device. Rats received TANES ( approximately 40 mA at 4 kHz) 7 weeks after injury. During TANES all injured rats demonstrated active body weight-supported stepping of hind limbs with left-right alternation and occasional front-hind coordination, resulting in significant, temporary increase in BBB scores (p<0.01). However, there is no response to TANES from rats with L2 transection, consistent with other reports that the CPG may be located at L1-2. S1 transection negatively implies the key role of TANES in CPG activation. The TANES not only renders paralyzed rats with a technique-induced ability to walk via activating CPG, but also is likely to be used for locomotor training. It has more beneficial effects for physical training over other training paradigms including treadmill training and invasive functional electrical stimulation. Therefore the TANES may have considerable potential for achieving improvement of functional recovery in animal models and a similar method may be suggested for human study.


Journal of Neuroscience Methods | 2010

Extensive scarring induced by chronic intrathecal tubing augmented cord tissue damage and worsened functional recovery after rat spinal cord injury.

Shu-xin Zhang; Fengfa Huang; Mary Gates; Jason White; Eric G. Holmberg

Intrathecal infusion has been widely used to directly deliver drugs or neurotrophins to a lesion site following spinal cord injury. Evidence shows that intrathecal infusion is efficient for 7 days but is markedly reduced after 14 days, due to time dependent occlusion. In addition, extensive fibrotic scarring is commonly observed with intrathecal infusion. These anomalies need to be clearly elucidated in histology. In the present study, all adult Long-Evans rats received a 25 mm contusion injury on spinal cord T10 produced using the NYU impactor device. Immediately after injury, catheter tubing with an outer diameter of 0.38 mm was inserted through a small dural opening at L3 into the subdural space with the tubing tip positioned near the injury site. The tubing was connected to an Alzet mini pump, which was filled with saline solution and was placed subcutaneously. Injured rats without tubing served as control. Rats were behaviorally tested for 6 weeks using the BBB locomotor rating scale and histologically assessed for tissue scarring. Six weeks later, we found that the intrathecal tubing caused extensive scarring and inflammation, related to neutrophils, macrophages and plasma cells. The tubings tip was occluded by scar tissue and inflammatory cells. The scar tissue surrounding the tubing consists of 20-70 layers of fibroblasts and densely compacted collagen fibers, seriously compressing and damaging the cord tissue. BBB scores of rats with intrathecal tubing were significantly lower than control rats (p<0.01) from 2 weeks after injury, implying serious impairment of functional recovery caused by the scarring.


Journal of Neuroscience Methods | 2012

Somatosensory evoked potentials can be recorded on the midline of the skull with subdermal electrodes in non-sedated rats elicited by magnetic stimulation of the tibial nerve

Shu-xin Zhang; Fengfa Huang; Mary Gates; Eric G. Holmberg

Somatosensory evoked potentials (SSEPs) are a sensitive quantitative measure of conduction in somatosensory pathways of the central nervous system and are increasingly used in both clinical trials and animal experiments. SSEPs can be recorded in non-sedated rodents by magnetic stimulation (MS) of peripheral nerves. To overcome some disadvantages caused by using anesthesia and implanted recording electrodes, we used subdermal needle electrodes located on the midline of the skull to successfully record SSEPs in non-sedated rats, elicited by stimulating the tibial nerve with a magnetic stimulator. The wave form contains a typical P1 peak and N1 peak. Although there is a variation of P1 latency, N1 latency, and P1-N1 amplitude between right side and left side, it was not statistically significant. In addition, there is a significantly positive relationship between P1-N1 amplitude and MS strength, suggesting that the increase in magnetic stimulating strength resulted in the increase in P1-N1 amplitude. Results in the present study demonstrate that our modified method is a reliable and feasible paradigm for recording SSEPs in non-sedated rats.


Brain Research | 2012

Tail nerve electrical stimulation combined with scar ablation and neural transplantation promotes locomotor recovery in rats with chronically contused spinal cord

Shu-xin Zhang; Fengfa Huang; Mary Gates; Eric G. Holmberg

To date, few treatment strategies applying cellular transplantation to the chronically injured spinal cord have yielded significant functional improvement in animal experiments. Here we report that significant improvement of locomotor function was achieved in rats with chronic spinal cord injury (SCI) by the application of combination treatments with tail nerve electrical stimulation (TANES), which can activate the central pattern generator, inducing active weight-supported stepping. Contusion injury (25 mm) to spinal cord T10 was produced by using the NYU impactor device in female, adult Long-Evans rats. Rats in 2 of 4 groups with SCI received basic treatments (scar ablation followed by transplantation of lamina propria of olfactory mucosa and cultured olfactory ensheathing cells into the lesion cavity) 6 weeks after SCI. Rats both with and without basic treatments were subjected to TANES one week after secondary surgery or 7 weeks after SCI. Sixteen weeks after secondary surgery or 22 weeks after SCI rats in two groups receiving TANES significantly improved their functional recovery compared with those without TANES, when evaluated with BBB open field rating scale (p<0.01). Among them, however, rats with basic treatments performed better than those without basic treatments. TANES may contribute to the activity-dependent plasticity below the injury level, which is critical for functional recovery. Additionally, TANES may promote axonal regeneration, including those from supraspinal level. Since TANES demonstrated considerable potential for achieving improvement of functional recovery in rat model, it would suggest a new strategy for chronic SCI.

Collaboration


Dive into the Shu-xin Zhang's collaboration.

Top Co-Authors

Avatar

Eric G. Holmberg

University of Alaska Anchorage

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J.W Ashford

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge