Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shu Yu is active.

Publication


Featured researches published by Shu Yu.


Toxicology Letters | 2015

Pyrroloquinoline quinone-conferred neuroprotection in rotenone models of Parkinson’s disease

Jiaojiao Qin; Meilong Wu; Shu Yu; Xiaorong Gao; Jingjing Zhang; Xingyue Dong; Jinyan Ji; Yuxi Zhang; Lin Zhou; Qi Zhang; Fei Ding

Pyrroloquinoline quinone (PQQ), a redox cofactor in the mitochondrial respiratory chain, has proven to protect neurons against glutamate-induced damage both in vitro and in vivo. This study was aimed to investigate the possible neuroprotective effects of PQQ in rotenone-induced Parkinsons disease (PD) model. Pre-treatment with PQQ prevented cultured SH-SY5Y cells from rotenone-induced apoptosis, accompanied by modulation of apoptosis-related proteins (Bcl-2, Bax and Smac), restoration of the mitochondrial membrane potential, inhibition of intracellular reactive oxygen species (ROS) production, suppression of tyrosine residues nitration, and dopamine redistribution. PQQ also exerted protective effects in an in vivo PD model, which was created by rotenone injection into the medial forebrain bundle of rats. Co-injection with PQQ and rotenone improved the apomorphine-evoked rotation, decreased neuronal loss, increased the ROS-scavenging ability, regulated intracellular expressions of mitochondrial complex subunits (Ndufs1-4), tyrosine hydroxylase, and vesicular monoamine transporter 2. Taken together, our results collectively suggest that PQQ confers neuroprotection in rotenone-induced PD model probably through complex and multifaceted mechanisms, at least involving oxidative stress, mitochondrial integrity, and dopamine functions.


Bio-medical Materials and Engineering | 2013

Biocompatibility evaluation of electrospun silk fibroin nanofibrous mats with primarily cultured rat hippocampal neurons.

Yahong Zhao; Weijia Zhao; Shu Yu; Yibing Guo; Xiaosong Gu; Yumin Yang

In this study, electrospinning was performed to fabricate silk fibroin (SF) nanofibrous mats, which were used as substrates for in vitro culture of rat hippocampal neurons. The light and electron micrographs demonstrated that the electrospun SF nanofibrous mat supported the survival and growth of the attached hippocampal neurons. MTT assay and immunocytochemistry in couple with Western blot analysis respectively indicated there was no significant difference in both the cell viability and expression levels of some proteins, including GAP-43, MAP-2, NF, and β-tubulin, between hippocampal neurons cultured in the electrospun SF nanofibrous mat extract and in plain neuronal medium. Our results indicated that electrospun SF nanofibrous mats were biocompatible to primary culture of hippocampal neurons without cytotoxic effects on the cell phenotype and functions, raising a potential possibility of using these mats for CNS therapeutic applications.


Toxicology and Applied Pharmacology | 2014

2-(4-Methoxyphenyl)ethyl-2-acetamido-2-deoxy-β-d-pyranoside confers neuroprotection in cell and animal models of ischemic stroke through calpain1/PKA/CREB-mediated induction of neuronal glucose transporter 3

Shu Yu; Qiong Cheng; Lu Li; Mei Liu; Yumin Yang; Fei Ding

Salidroside is proven to be a neuroprotective agent of natural origin, and its analog, 2-(4-Methoxyphenyl)ethyl-2-acetamido-2-deoxy-β-d-pyranoside (named SalA-4g), has been synthesized in our lab. In this study, we showed that SalA-4g promoted neuronal survival and inhibited neuronal apoptosis in primary hippocampal neurons exposed to oxygen and glucose deprivation (OGD) and in rats subjected to ischemia by transient middle cerebral artery occlusion (MCAO), respectively, and that SalA-4g was more neuroprotective than salidroside. We further found that SalA-4g elevated glucose uptake in OGD-injured primary hippocampal neurons and increased the expression and recruitment of glucose transporter 3 (GLUT3) in ischemic brain. Signaling analysis revealed that SalA-4g triggered the phosphorylation of CREB, and increased the expression of PKA RII in primary hippocampal neurons exposed to OGD injury, while inhibition of PKA/CREB by H-89 alleviated the elevation in glucose uptake and GLUT3 expression, and blocked the protective effects of SalA-4g. Moreover, SalA-4g was noted to inhibit intracellular Ca(2+) influx and calpain1 activation in OGD-injured primary hippocampal neurons. Our results suggest that SalA-4g neuroprotection might be mediated by increased glucose uptake and elevated GLUT3 expression through calpain1/PKA/CREB pathway.


Journal of Proteome Research | 2012

Comparative proteomic analysis of primary schwann cells and a spontaneously immortalized schwann cell line RSC 96: a comprehensive overview with a focus on cell adhesion and migration related proteins.

Yuhua Ji; Mi Shen; Xin Wang; Shuqiang Zhang; Shu Yu; Gang Chen; Xiaosong Gu; Fei Ding

Schwann cells (SCs) are the principal glial cells of the peripheral nervous system (PNS). As a result of tissue heterogeneity and difficulties in the isolation and culture of primary SCs, a considerable understanding of SC biology is obtained from SC lines. However, the differences between the primary SCs and SC lines remain uncertain. In the present study, quantitative proteomic analysis based on isobaric tags for relative and absolute quantitation (iTRAQ) labeling was conducted to obtain an unbiased view of the proteomic profiles of primary rat SCs and RSC96, a spontaneously immortalized rat SC line. Out of 1757 identified proteins (FDR < 1%), 1702 were quantified, while 61 and 78 were found to be, respectively, up- or down-regulated (90% confidence interval) in RSC96. Bioinformatics analysis indicated the unique features of spontaneous immortalization, illustrated the dedifferentiated state of RSC96, and highlighted a panel of novel proteins associated with cell adhesion and migration including CADM4, FERMT2, and MCAM. Selected proteomic data and the requirement of these novel proteins in SC adhesion and migration were properly validated. Taken together, our data collectively revealed proteome differences between primary SCs and RSC96, validated several differentially expressed proteins with potential biological significance, and generated a database that may serve as a useful resource for studies of SC biology and pathology.


Neuropharmacology | 2016

Neuroprotective effects of pyrroloquinoline quinone against rotenone injury in primary cultured midbrain neurons and in a rat model of Parkinson's disease.

Qi Zhang; Shuhua Chen; Shu Yu; Jiaojiao Qin; Jingjing Zhang; Qiong Cheng; Kaifu Ke; Fei Ding

Mitochondrial dysfunction and oxidative stress have been implicated in the pathogenesis of Parkinsons disease (PD). Pyrroloquinoline quinone (PQQ), a redox cofactor in the mitochondrial respiratory chain, has been reported to protect SH-SY5Y cells from cytotoxicity induced by rotenone, a mitochondrial complex I inhibitor. In this study, we aimed to investigate the neuroprotective effects of PQQ against rotenone injury in primary cultured midbrain neurons and in a rat model of Parkinsons disease. Pre-treatment with PQQ prevented cultured midbrain neurons from rotenone-induced apoptosis, restored mitochondrial membrane potential, inhibited intracellular reactive oxygen species (ROS) production, and affected microtubule depolymerization. On the other hand, intraperitoneal administration of PQQ exerted protective effects on rats that had received rotenone injection into the medial forebrain bundle through decreasing the apomorphine-evoked rotation, inhibiting neuronal loss and TH down-regulation in SNc, increasing the antioxidative ability, and regulating intracellular expressions of Ndufs1 and Ndufs 4. Silencing of Ndufs1 or Ndufs4 in cultured SH-SY5Y cells or midbrain neurons reduced the neuroprotective effects of PQQ. Overall, our results suggest that PQQ neuroprotection may be mediated by the inhibition of mitochondrial dysfunction and oxidative stress as well as by the gene modulation of Ndufs1 and Ndufs4.


PLOS ONE | 2014

An active component of Achyranthes bidentata polypeptides provides neuroprotection through inhibition of mitochondrial-dependent apoptotic pathway in cultured neurons and in animal models of cerebral ischemia.

Shu Yu; Caiping Wang; Qiong Cheng; Hui Xu; Shibo Zhang; Lu Li; Qi Zhang; Xiaosong Gu; Fei Ding

An active component has been isolated by reverse-phase high performance liquid chromatography (HPLC) from Achyranthes bidentata Blume polypeptides that are extracted from Achyranthes bidentata Blume, a Chinese medicinal herb. The active component is called ABPPk based on the order of HPLC elution. In this study, we used in vitro and in vivo experimental models of cerebral ischemia to investigate the possible neuroprotective effect of ABPPk. ABPPk treatment promoted neuronal survival and inhibited neuronal apoptosis in primary cortical neurons exposed to oxygen and glucose deprivation and in rats subjected to transient middle cerebral artery occlusion. The role of ABPPk in protection against ischemia-induced neuronal damage might be mediated by mitochondrial-dependent pathways, including modulation of apoptosis-related gene expression, regulation of mitochondrial dysfunction through restoring mitochondrial membrane potential, reducing release of mitochondrial apoptogenic factors, and inhibiting intracellular ROS production. The neuroprotective effect of ABPPk may suggest the possible use of this agent in the treatment and prevention of cerebral ischemic stroke.


Neuroscience | 2016

Therapeutic benefits of combined treatment with tissue plasminogen activator and 2-(4-methoxyphenyl)ethyl-2-acetamido-2-deoxy-β-d-pyranoside in an animal model of ischemic stroke.

Shu Yu; Xin Liu; Yuntian Shen; Hui Xu; Yumin Yang; Fei Ding

Tissue plasminogen activator (tPA) is the only approved therapy for acute ischemic stroke, but tPA therapy is limited by a short therapeutic window and some adverse side effects. 2-(4-Methoxyphenyl)ethyl-2-acetamido-2-deoxy-β-d-pyranoside, a salidroside analog (code-named SalA-4g), has shown potent neuroprotective effects. In this study, a rat model of embolic middle cerebral artery occlusion (MCAO) was used to mimic ischemic stroke. The embolic MCAO rats were intravenously (iv) injected with tPA alone, SalA-4g alone, or a combination of tPA and SalA-4g. Compared to treatment with tPA alone at 4h post MCAO, combined treatment with tPA at 4h post MCAO and SalA-4g starting at 4h post MCAO and continuing for 3days at an interval of 24h significantly reduced neurological deficits and infarct volume, and significantly inhibited the intracerebral bleeding, edema formation, neuronal loss, and cellular apoptosis in the ischemic brain. Our results suggested that additive neuroprotective actions of SalA-4g contributed to widening the therapeutic window of tPA therapy and ameliorating its side effects in treating MCAO rats. The therapeutic benefits of combined treatment with tPA and SalA-4g for ischemic stroke might be associated with its effects on cerebral glucose metabolism.


Neural Regeneration Research | 2014

The Achyranthes bidentata polypeptide k fraction enhances neuronal growth in vitro and promotes peripheral nerve regeneration after crush injury in vivo

Qiong Cheng; Chunyi Jiang; Caiping Wang; Shu Yu; Qi Zhang; Xiaosong Gu; Fei Ding

We have previously shown that Achyranthes bidentata polypeptides (ABPP), isolated from Achyranthes bidentata Blume (a medicinal herb), exhibit neurotrophic and neuroprotective effects on the nervous system. To identify the major active component of ABPP, and thus optimize the use of ABPP, we used reverse-phase high performance liquid chromatography to separate ABPP. We obtained 12 fractions, among which the fraction of ABPPk demonstrated the strongest neuroactivity. Immunocytochemistry and western blot analysis showed that ABPPk promoted neurite growth in cultured dorsal root ganglion explant and dorsal root ganglion neurons, which might be associated with activation of Erk1/2. A combination of behavioral tests, electrophysiological assessment, and histomorphometric analysis indicated that ABPPk enhanced nerve regeneration and function restoration in a mouse model of crushed sciatic nerve. All the results suggest that ABPPk, as the key component of ABPP, can be used for peripheral nerve repair to yield better outcomes than ABPP.


Neuroscience | 2018

2-(4-Methoxyphenyl)ethyl-2-Acetamido-2-deoxy-β-d-pyranoside (A Salidroside Analog) Confers Neuroprotection with a Wide Therapeutic Window by Regulating Local Glucose Metabolism in a Rat Model of Cerebral Ischemic Injury

Shu Yu; Hui Xu; Xiaojing Chi; Li Wei; Qiong Cheng; Yumin Yang; Chun Zhou; Fei Ding

2-(4-Methoxyphenyl)ethyl-2-acetamido-2-deoxy-β-d-pyranoside (salidroside analog-4g, SalA-4g), has shown neuroprotective prospects for the treatment of ischemic stroke. However, the dose-response and time window study for SalA-4g, and the mechanism of SalA-4g-mediated neuroprotection remain unclear. Here, we systematically investigated the therapeutic time window and dosage of SalA-4g in permanent focal cerebral ischemia in rats. SalA-4g dose-dependently improved stroke outcome. Either pre-treatment or post-treatment of SalA-4g exhibited notable neuroprotection, and maintained for up to 6 h after ischemia onset. Moreover, significant neurological functional recovery was found after SalA-4g administration in long-term functional assays. Further studies suggested that SalA-4g ameliorated neuronal cell death, elevated local glucose metabolism and enhanced the expression level of glucose transporter 1 and 3 in the ipsilateral cortex and striatum. We suggest that data of this study are critical in exploring the clinical application prospects of SalA-4g for the treatment of ischemic stroke.


Journal of Thoracic Disease | 2018

Pyrroloquinoline quinone attenuates cachexia-induced muscle atrophy via suppression of reactive oxygen species

Tongtong Xu; Xiaoming Yang; Changyue Wu; Jiaying Qiu; Qingqing Fang; Lingbin Wang; Shu Yu; Hualin Sun

Background Cachexia, a wasting syndrome, is most commonly observed in individuals with advanced cancer including lung cancer, esophageal cancer, liver cancer, etc. The characteristic sign of cachexia is muscle atrophy. To date, effective countermeasures have been still deficiency to alleviate muscle atrophy. Reactive oxygen species (ROS) are important regulators of muscle atrophy. Therefore, the effects of a naturally antioxidant, pyrroloquinoline quinone (PQQ), were explored on muscle atrophy induced by cachexia in the present study. Methods Tumor necrosis factor-α (TNF-α) induced C2C12 myotubes atrophy model was constructed. The atrophied C2C12 myotubes were dealt with the presence or absence of N-acetyl-L-cysteine (NAC, an antioxidant for ROS abolition) (5 mM) or PQQ (80 µM) for 24 hours. ROS content was determined by dichlorodihydrofluorescein diacetate (DCFH-DA) staining. The diameter of myotubes was analyzed by myosin heavy chain (MHC) staining. The protein levels of MHC, muscle atrophy F-box (MAFbx) and muscle RING finger-1 (MuRF-1) in each group were observed by Western blotting. Results First, ROS generation was enhanced in C2C12 myotubes treated with TNF-α. NAC treatments significantly avoided the reduction in the diameter of C2C12 myotubes, and concomitantly increased MHC levels, and decreased ROS contents, MuRF1 and MAFbx levels. These data suggested that the increased ROS induced by TNF-α might play a central role in muscle wasting. PQQ (a naturally occurring antioxidant) administration inhibited C2C12 myotubes atrophy induced by TNF-α, as evidenced by the increase of the diameter of C2C12 myotubes, together with increased MHC levels and decreased ROS, MAFbx and MuRF-1 levels. Conclusions PQQ resists atrophic effect dependent on, at least in part, decreased ROS in skeletal muscle treated with TNF-α.

Collaboration


Dive into the Shu Yu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge