Shu Zhu
University of Pennsylvania
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shu Zhu.
Blood | 2015
Shu Zhu; Richard J. Travers; James H. Morrissey; Scott L. Diamond
Factor XIIa (FXIIa) and factor XIa (FXIa) contribute to thrombosis in animal models, whereas platelet-derived polyphosphate (polyP) may potentiate contact or thrombin-feedback pathways. The significance of these mediators in human blood under thrombotic flow conditions on tissue factor (TF) -bearing surfaces remains inadequately resolved. Human blood (corn trypsin inhibitor treated [4 μg/mL]) was tested by microfluidic assay for clotting on collagen/TF at TF surface concentration ([TF]wall) from ∼0.1 to 2 molecules per μm(2). Anti-FXI antibodies (14E11 and O1A6) or polyP-binding protein (PPXbd) were used to block FXIIa-dependent FXI activation, FXIa-dependent factor IX (FIX) activation, or platelet-derived polyP, respectively. Fibrin formation was sensitive to 14E11 at 0 to 0.1 molecules per µm(2) and sensitive to O1A6 at 0 to 0.2 molecules per µm(2). However, neither antibody reduced fibrin generation at ∼2 molecules per µm(2) when the extrinsic pathway became dominant. Interestingly, PPXbd reduced fibrin generation at low [TF]wall (0.1 molecules per µm(2)) but not at zero or high [TF]wall, suggesting a role for polyP distinct from FXIIa activation and requiring low extrinsic pathway participation. Regardless of [TF]wall, PPXbd enhanced fibrin sensitivity to tissue plasminogen activator and promoted clot retraction during fibrinolysis concomitant with an observed PPXbd-mediated reduction of fibrin fiber diameter. This is the first detection of endogenous polyP function in human blood under thrombotic flow conditions. When triggered by low [TF]wall, thrombosis may be druggable by contact pathway inhibition, although thrombolytic susceptibility may benefit from polyP antagonism regardless of [TF]wall.
Thrombosis Research | 2014
Shu Zhu; Scott L. Diamond
Generation of active Factor XII (FXIIa) triggers blood clotting on artificial surfaces and may also enhance intravascular thrombosis. We developed a patterned kaolin (0 to 0.3 pg/μm(2))/type 1 collagen fibril surface for controlled microfluidic clotting assays. Perfusion of whole blood (treated only with a low level of 4 μg/mL of the XIIa inhibitor, corn trypsin inhibitor) drove platelet deposition followed by fibrin formation. At venous wall shear rate (100 s(-1)), kaolin accelerated onset of fibrin formation by ~100 sec when compared to collagen alone (250 sec vs. 350 sec), with little effect on platelet deposition. Even with kaolin present, arterial wall shear rate (1000 s(-1)) delayed and suppressed fibrin formation compared to venous wall shear rate. A comparison of surfaces for extrinsic activation (tissue factor TF/collagen) versus contact activation (kaolin/collagen) that each generated equal platelet deposition at 100 s(-1) revealed: (1) TF surfaces promoted much faster fibrin onset (at 100 sec) and more endpoint fibrin at 600 sec at either 100 s(-1) or 1000 s(-1), and (2) kaolin and TF surfaces had a similar sensitivity for reduced fibrin deposition at 1000 s(-1) (compared to fibrin formed at 100 s(-1)) despite differing coagulation triggers. Anti-platelet drugs inhibiting P2Y1, P2Y12, cyclooxygenase-1 or activating IP-receptor or guanylate cyclase reduced platelet and fibrin deposition on kaolin/collagen. Since FXIIa or FXIa inhibition may offer safe antithrombotic therapy, especially for biomaterial thrombosis, these defined collagen/kaolin surfaces may prove useful in drug screening tests or in clinical diagnostic assays of blood under flow conditions.
Biorheology | 2016
Shu Zhu; Bradley A. Herbig; Ruizhi Li; Thomas V. Colace; Ryan W. Muthard; Keith B. Neeves; Scott L. Diamond
Microfluidic devices create precisely controlled reactive blood flows and typically involve: (i) validated anticoagulation/pharmacology protocols, (ii) defined reactive surfaces, (iii) defined flow-transport regimes, and (iv) optical imaging. An 8-channel device can be run at constant flow rate or constant pressure drop for blood perfusion over a patterned collagen, collagen/kaolin, or collagen/tissue factor (TF) to measure platelet, thrombin, and fibrin dynamics during clot growth. A membrane-flow device delivers a constant flux of platelet agonists or coagulation enzymes into flowing blood. A trifurcated device sheaths a central blood flow on both sides with buffer, an ideal approach for on-chip recalcification of citrated blood or drug delivery. A side-view device allows clotting on a porous collagen/TF plug at constant pressure differential across the developing clot. The core-shell architecture of clots made in mouse models can be replicated in this device using human blood. For pathological flows, a stenosis device achieves shear rates of >100,000 s(-1) to drive plasma von Willebrand factor (VWF) to form thick long fibers on collagen. Similarly, a micropost-impingement device creates extreme elongational and shear flows for VWF fiber formation without collagen. Overall, microfluidics are ideal for studies of clotting, bleeding, fibrin polymerization/fibrinolysis, cell/clot mechanics, adhesion, mechanobiology, and reaction-transport dynamics.
Journal of Biological Chemistry | 2016
Shu Zhu; Yichen Lu; Talid Sinno; Scott L. Diamond
Coagulation kinetics are well established for purified blood proteases or human plasma clotting isotropically. However, less is known about thrombin generation kinetics and transport within blood clots formed under hemodynamic flow. Using microfluidic perfusion (wall shear rate, 200 s−1) of corn trypsin inhibitor-treated whole blood over a 250-μm long patch of type I fibrillar collagen/lipidated tissue factor (TF; ∼1 TF molecule/μm2), we measured thrombin released from clots using thrombin-antithrombin immunoassay. The majority (>85%) of generated thrombin was captured by intrathrombus fibrin as thrombin-antithrombin was largely undetectable in the effluent unless Gly-Pro-Arg-Pro (GPRP) was added to block fibrin polymerization. With GPRP present, the flux of thrombin increased to ∼0.5 × 10−12 nmol/μm2-s over the first 500 s of perfusion and then further increased by ∼2–3-fold over the next 300 s. The increased thrombin flux after 500 s was blocked by anti-FXIa antibody (O1A6), consistent with thrombin-feedback activation of FXI. Over the first 500 s, ∼92,000 molecules of thrombin were generated per surface TF molecule for the 250-μm-long coating. A single layer of platelets (obtained with αIIbβ3 antagonism preventing continued platelet deposition) was largely sufficient for thrombin production. Also, the overall thrombin-generating potential of a 1000-μm-long coating became less efficient on a per μm2 basis, likely due to distal boundary layer depletion of platelets. Overall, thrombin is robustly generated within clots by the extrinsic pathway followed by late-stage FXIa contributions, with fibrin localizing thrombin via its antithrombin-I activity as a potentially self-limiting hemostatic mechanism.
Journal of Surgical Research | 2015
Gregory Wiener; Hunter B. Moore; Ernest E. Moore; Eduardo Gonzalez; Scott L. Diamond; Shu Zhu; Angelo D'Alessandro; Anirban Banerjee
BACKGROUND Metabolites are underappreciated for their effect on coagulation. Taurocholic acid (TUCA), a bile acid, has been shown to regulate cellular activity and promote fibrin sealant degradation. We hypothesize that TUCA impairs whole blood clot formation and promotes fibrinolysis. METHODS TUCA was exogenously added to whole blood obtained from volunteers. A titration from 250 μM-750 μM was used due to biologic relevance. Whole blood mixtures were assayed using thrombelastography for clot strength (maximum amplitude [MA]) and fibrinolysis (LY30) quantification. Tranexamic acid was used to block plasmin-mediated fibrinolysis. Platelet microfluidics were performed. A proteomic analysis was completed on citrated plasma obtained from a shock and resuscitation rat model. RESULTS Fibrinolysis increased when 750-μM TUCA was added to whole blood (median LY30 0.08-5.7, P = 0.010) and clot strength decreased (median MA of 53.3-43.8, P = 0.010). The addition of tranexamic acid, to a 750-μM TUCA titration, partially reversed the induced fibrinolysis (LY30: without 7.7 versus with 2.7) and the decrease in clot strength (MA: without 48.2 versus with 53.2), but did not reverse the effects to whole blood levels. Platelet function reduced by 50% in the presence of 100-μM TUCA. Rats had a median 52-fold increase in TUCA, after a shock state that stayed elevated after resuscitation. CONCLUSIONS TUCA reduces clot strength and promotes fibrinolysis. The clot strength reduction is attributable to platelet inhibition. This metabolic effect on coagulation warrants further investigation, as localized areas of the body, with high levels of bile acid, may be at risk for postoperative bleeding.
Mathematical Medicine and Biology-a Journal of The Ima | 2016
Yichen Lu; Mei Yan Lee; Shu Zhu; Talid Sinno; Scott L. Diamond
Abstract During clotting under flow, platelets bind and activate on collagen and release autocrinic factors such as ADP and thromboxane, while tissue factor (TF) on the damaged wall leads to localized thrombin generation. Towards patient-specific simulation of thrombosis, a multiscale approach was developed to account for: platelet signalling [neural network (NN) trained by pairwise agonist scanning (PAS), PAS-NN], platelet positions (lattice kinetic Monte Carlo, LKMC), wall-generated thrombin and platelet-released ADP/thromboxane convection–diffusion (partial differential equation, PDE) and flow over a growing clot (lattice Boltzmann). LKMC included shear-driven platelet aggregate restructuring. The PDEs for thrombin, ADP and thromboxane were solved by finite element method using cell activation-driven adaptive triangular meshing. At all times, intracellular calcium was known for each platelet by PAS-NN in response to its unique exposure to local collagen, ADP, thromboxane and thrombin. When compared with microfluidic experiments of human blood clotting on collagen/TF driven by constant pressure drop, the model accurately predicted clot morphology and growth with time. In experiments and simulations at TF at 0.1 and 10 molecule-TF/\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}
Journal of Thrombosis and Haemostasis | 2016
Shu Zhu; John D. Welsh; Lawrence F. Brass; Scott L. Diamond
\mu
Biophysical Journal | 2018
Vijay Govindarajan; Shu Zhu; Ruizhi Li; Yichen Lu; Scott L. Diamond; Jaques Reifman; Alexander Y. Mitrophanov
\end{document}m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}
Arteriosclerosis, Thrombosis, and Vascular Biology | 2018
Shu Zhu; Jason Chen; Scott L. Diamond
^{2}
Frontiers of Medicine in China | 2018
Shu Zhu; Bradley A. Herbig; Xinren Yu; Jason Chen; Scott L. Diamond
\end{document} and initial wall shear rate of 200 s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}