Shuaidong Huo
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shuaidong Huo.
ACS Nano | 2012
Keyang Huang; Huili Ma; Juan Liu; Shuaidong Huo; Anil Kumar; Tuo Wei; Xu Zhang; Shubin Jin; Yaling Gan; Paul C. Wang; Shengtai He; Xiaoning Zhang; Xing-Jie Liang
This work demonstrated that ultrasmall gold nanoparticles (AuNPs) smaller than 10 nm display unique advantages over nanoparticles larger than 10 nm in terms of localization to, and penetration of, breast cancer cells, multicellular tumor spheroids, and tumors in mice. Au@tiopronin nanoparticles that have tunable sizes from 2 to 15 nm with identical surface coatings of tiopronin and charge were successfully prepared. For monolayer cells, the smaller the Au@tiopronin NPs, the more AuNPs found in each cell. In addition, the accumulation of Au NPs in the ex vivo tumor model was size-dependent: smaller AuNPs were able to penetrate deeply into tumor spheroids, whereas 15 nm nanoparticles were not. Owing to their ultrasmall nanostructure, 2 and 6 nm nanoparticles showed high levels of accumulation in tumor tissue in mice after a single intravenous injection. Surprisingly, both 2 and 6 nm Au@tiopronin nanoparticles were distributed throughout the cytoplasm and nucleus of cancer cells in vitro and in vivo, whereas 15 nm Au@tiopronin nanoparticles were found only in the cytoplasm, where they formed aggregates. The ex vivo multicellular spheroid proved to be a good model to simulate in vivo tumor tissue and evaluate nanoparticle penetration behavior. This work gives important insights into the design and functionalization of nanoparticles to achieve high levels of accumulation in tumors.
Cancer Research | 2013
Shuaidong Huo; Huili Ma; Keyang Huang; Juan Liu; Tuo Wei; Shubin Jin; Jinchao Zhang; Shengtai He; Xing-Jie Liang
Nanoparticles offer potential as drug delivery systems for chemotherapeutics based on certain advantages of molecular drugs. In this study, we report that particle size exerts great influence on the penetration and retention behavior of nanoparticles entering tumors. On comparing gold-coated Au@tiopronin nanoparticles that were prepared with identical coating and surface properties, we found that 50 nanoparticles were more effective in all in vitro, ex vivo, and in vivo assays conducted using MCF-7 breast cells as a model system. Beyond superior penetration in cultured cell monolayers, 50 nm Au@tiopronin nanoparticles also penetrated more deeply into tumor spheroids ex vivo and accumulated more effectively in tumor xenografts in vivo after a single intravenous dose. In contrast, larger gold-coated nanoparticles were primarily localized in the periphery of the tumor spheroid and around blood vessels, hindering deep penetration into tumors. We found multicellular spheroids to offer a simple ex vivo tumor model to simulate tumor tissue for screening the nanoparticle penetration behavior. Taken together, our findings define an optimal smaller size for nanoparticles that maximizes their effective accumulation in tumor tissue.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Tuo Wei; Chao Chen; Juan Liu; Cheng Liu; Paola Posocco; Xiaoxuan Liu; Qiang Cheng; Shuaidong Huo; Zicai Liang; Maurizio Fermeglia; Sabrina Pricl; Xing-Jie Liang; Palma Rocchi; Ling Peng
Significance Nanotechnology-based drug delivery is expected to bring new hope for cancer treatment by enhancing anticancer drug efficacy, overcoming drug resistance, and reducing drug toxicity. In this respect, we developed an innovative drug delivery system based on a self-assembling amphiphilic dendrimer, which can generate supramolecular nanomicelles with large void space in their core to encapsulate anticancer drugs with high loading capacity. The resulting drug-encapsulated nanomicelles can effectively enhance drug potency and combat drug resistance by promoting cellular uptake and decreasing efflux of the anticancer drug. Moreover, this drug delivery system can significantly reduce the systemic toxicity of the free drug. The present study illustrates a successful example of how advances in dendrimer nanotechnology can be advantageously implemented to foster therapeutic perspectives. Drug resistance and toxicity constitute challenging hurdles for cancer therapy. The application of nanotechnology for anticancer drug delivery is expected to address these issues and bring new hope for cancer treatment. In this context, we established an original nanomicellar drug delivery system based on an amphiphilic dendrimer (AmDM), which could generate supramolecular micelles to effectively encapsulate the anticancer drug doxorubicin (DOX) with high drug-loading capacity (>40%), thanks to the unique dendritic structure creating large void space for drug accommodation. The resulting AmDM/DOX nanomicelles were able to enhance drug potency and combat doxorubicin resistance in breast cancer models by significantly enhancing cellular uptake while considerably decreasing efflux of the drug. In addition, the AmDM/DOX nanoparticles abolished significantly the toxicity related to the free drug. Collectively, our studies demonstrate that the drug delivery system based on nanomicelles formed with the self-assembling amphiphilic dendrimer constitutes a promising and effective drug carrier in cancer therapy.
Advanced Materials | 2014
Xiangdong Xue; Yuanyuan Zhao; Luru Dai; Xu Zhang; Xiaohong Hao; Chunqiu Zhang; Shuaidong Huo; Juan Liu; Chang Liu; Anil Kumar; Wei-Qiang Chen; Guozhang Zou; Xing-Jie Liang
Tetraphenylethene and doxorubicin are assembled into a self-indicating drug delivery system (TD NPs). TD NPs are decomposed into DOX and TPE NPs in lysosome. Since TD NPs, TPE NPs and DOX are all fluorescent, the detachment of DOX from TPE NPs is accompanied by fluorescence changing. By observing the fluorescence changes, the spatiotemporal drug release is visualized.
Nano Letters | 2013
Tuo Wei; Juan Liu; Huili Ma; Qiang Cheng; Yuanyu Huang; Jing Zhao; Shuaidong Huo; Xiangdong Xue; Zicai Liang; Xing-Jie Liang
Poor penetration of therapeutic drugs into tumors is a major challenge in anticancer therapy, especially in solid tumors, leading to reduced therapeutic efficacy in vivo. In the study, we used a new tumor-penetrating peptide, CRGDK, to conjugate onto the surface of doxorubicin encapsulated nanoscale micelles. The CRGDK peptide triggered specific binding to neuropilin-1, leading to enhanced cellular uptake and cytotoxicity in vitro and highly accumulation and penetration in the tumors in vivo.
ACS Nano | 2014
Shuaidong Huo; Shubin Jin; Xiaowei Ma; Xiangdong Xue; Keni Yang; Anil Kumar; Paul C. Wang; Jinchao Zhang; Zhongbo Hu; Xing-Jie Liang
The aim of this study was to determine the size-dependent penetration ability of gold nanoparticles and the potential application of ultrasmall gold nanoparticles for intranucleus delivery and therapy. We synthesized gold nanoparticles with diameters of 2, 6, 10, and 16 nm and compared their intracellular distribution in MCF-7 breast cancer cells. Nanoparticles smaller than 10 nm (2 and 6 nm) could enter the nucleus, whereas larger ones (10 and 16 nm) were found only in the cytoplasm. We then investigated the possibility of using ultrasmall 2 nm nanoparticles as carriers for nuclear delivery of a triplex-forming oligonucleotide (TFO) that binds to the c-myc promoter. Compared to free TFO, the nanoparticle-conjugated TFO was more effective at reducing c-myc RNA and c-myc protein, which resulted in reduced cell viability. Our result demonstrated that the entry of gold nanoparticles into the cell nucleus is critically dependent on the size of the nanoparticles. We developed a strategy for regulating gene expression, by directly delivering TFOs into the nucleus using ultrasmall gold nanoparticles. More importantly, guidelines were provided to choose appropriate nanocarriers for different biomedical purposes.
ACS Nano | 2015
Ying Jiang; Shuaidong Huo; Tsukasa Mizuhara; Riddha Das; Yi-Wei Lee; Singyuk Hou; Daniel F. Moyano; Bradley Duncan; Xing-Jie Liang; Vincent M. Rotello
Correlation of the surface physicochemical properties of nanoparticles with their interactions with biosystems provides key foundational data for nanomedicine. We report here the systematic synthesis of 2, 4, and 6 nm core gold nanoparticles (AuNP) featuring neutral (zwitterionic), anionic, and cationic headgroups. The cellular internalization of these AuNPs was quantified, providing a parametric evaluation of charge and size effects. Contrasting behavior was observed with these systems: with zwitterionic and anionic particles, uptake decreased with increasing AuNP size, whereas with cationic particles, uptake increased with increasing particle size. Through mechanistic studies of the uptake process, we can attribute these opposing trends to a surface-dictated shift in uptake pathways. Zwitterionic NPs are primarily internalized through passive diffusion, while the internalization of cationic and anionic NPs is dominated by multiple endocytic pathways. Our study demonstrates that size and surface charge interact in an interrelated fashion to modulate nanoparticle uptake into cells, providing an engineering tool for designing nanomaterials for specific biological applications.
ACS Nano | 2014
Anil Kumar; Shuaidong Huo; Xiaohong Zhang; Jie Liu; Aaron Tan; Shengliang Li; Shubin Jin; Xiangdong Xue; Yuliang Zhao; Ji T; Lu Han; Huizhou Liu; Jinchao Zhang; Guozhang Zou; Wang T; Tang S; Xing-Jie Liang
Platinum-based anticancer drugs such as cisplatin, oxaliplatin, and carboplatin are some of the most potent chemotherapeutic agents but have limited applications due to severe dose-limiting side effects and a tendency for cancer cells to rapidly develop resistance. The therapeutic index can be improved through use of nanocarrier systems to target cancer cells efficiently. We developed a unique strategy to deliver a platinum(IV) drug to prostate cancer cells by constructing glutathione-stabilized (Au@GSH) gold nanoparticles. Glutathione (GSH) has well-known antioxidant properties, which lead to cancer regression. Here, we exploit the advantages of both the antioxidant properties and high surface-area-to-volume ratio of Au@GSH NPs to demonstrate their potential for delivery of a platinum(IV) drug by targeting the neuropilin-1 receptor (Nrp-1). A lethal dose of a platinum(IV) drug functionalized with the Nrp-1-targeting peptide (CRGDK) was delivered specifically to prostate cancer cells in vitro. Targeted peptide ensures specific binding to the Nrp-1 receptor, leading to enhanced cellular uptake level and cell toxicity. The nanocarriers were themselves nontoxic, but exhibited high cytotoxicity and increased efficacy when functionalized with the targeting peptide and drug. The uptake of drug-loaded nanocarriers is dependent on the interaction with Nrp-1 in cell lines expressing high (PC-3) and low (DU-145) levels of Nrp-1, as confirmed through inductively coupled plasma mass spectrometry and confocal microscopy. The nanocarriers have effective anticancer activity, through upregulation of nuclear factor kappa-B (NF-κB) protein (p50 and p65) expression and activation of NF-κB-DNA-binding activity. Our preliminary investigations with platinum(IV)-functionalized gold nanoparticles along with a targeting peptide hold significant promise for future cancer treatment.
ACS Nano | 2015
Xiangdong Xue; Shubin Jin; Chunqiu Zhang; Keni Yang; Shuaidong Huo; Fei Chen; Guozhang Zou; Xing-Jie Liang
The versatility of the fluorescent probes inspires us to design fluorescently traceable prodrugs, which enables tracking the drug delivery kinetics in living cells. Herein, we constructed a self-indicating nanoprodrug with two fluorescent moieties, an aggregation-induced emission molecule (tetraphenylethylene, TPE) and a luminant anticancer drug (doxorubicin, DOX), with a pH-responsive linker between them. Except when a low pH environment is encountered, an energy-transfer relay (ETR) occurs and inactivates the fluorescence of both, showing a dark background. Otherwise, the ETR would be interrupted and evoke a dual-color fluorogenic process, giving distinct fluorogenic read out. By observing the dual-color fluorogenic scenario, we captured the kinetics of the drug release process in living cells. Because the separated TPE and DOX are both fluorescent but have a distinct spectrum, by examining the spatiotemporal pattern of TPE and DOX, we were able to precisely disclose the drug-releasing site, the releasing time, the destinations of the carriers, and the executing site of the drugs at subcellular level. Furthermore, different intracellular drug release kinetics between free doxorubicin and its nanoformulations were also observed in a real-time manner.
ACS Applied Materials & Interfaces | 2014
Chunqiu Zhang; Chang Liu; Xiangdong Xue; Xu Zhang; Shuaidong Huo; Yonggang Jiang; Wei-Qiang Chen; Guozhang Zou; Xing-Jie Liang
Tetraphenylethylene (TPE), an archetypal luminogen with aggregation-induced emission (AIE), was grafted to a salt-responsive peptide to yield a yet luminescent hydrogelator. After testing different parameters, we found that only in the presence of salt rather than temperature, pH, and solvent, did the monodisperse hydrogelators self-assemble into a hydrogel network with bright emission turned on. The induced luminescence was a dynamic change and enabled real time monitoring of hydrogel formation. Grating AIE molecules to stimuli-responsive peptides is a promising approach for the development of self-revealing soft materials for biological applications.