Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shuaiying Cui is active.

Publication


Featured researches published by Shuaiying Cui.


Nature Medicine | 2013

Lysine-specific demethylase 1 is a therapeutic target for fetal hemoglobin induction.

Lihong Shi; Shuaiying Cui; James Douglas Engel; Osamu Tanabe

Enhanced fetal γ-globin synthesis alleviates symptoms of β-globinopathies such as sickle cell disease and β-thalassemia, but current γ-globin–inducing drugs offer limited beneficial effects. We show here that lysine-specific demethylase 1 (LSD1) inhibition by RNAi in human erythroid cells or by the monoamine oxidase inhibitor tranylcypromine in human erythroid cells or β-type globin–transgenic mice enhances γ-globin expression. LSD1 is thus a promising therapeutic target for γ-globin induction, and tranylcypromine may serve as a lead compound for the development of a new γ-globin inducer.


Molecular and Cellular Biology | 2011

Nuclear Receptors TR2 and TR4 Recruit Multiple Epigenetic Transcriptional Corepressors That Associate Specifically with the Embryonic β-Type Globin Promoters in Differentiated Adult Erythroid Cells

Shuaiying Cui; Katarzyna E. Kolodziej; Naoshi Obara; Alexandra Amaral-Psarris; Jeroen Demmers; Lihong Shi; James Douglas Engel; Frank Grosveld; John Strouboulis; Osamu Tanabe

ABSTRACT Nuclear receptors TR2 and TR4 (TR2/TR4) were previously shown to bind in vitro to direct repeat elements in the mouse and human embryonic and fetal β-type globin gene promoters and to play critical roles in the silencing of these genes. By chromatin immunoprecipitation (ChIP) we show that, in adult erythroid cells, TR2/TR4 bind to the embryonic β-type globin promoters but not to the adult β-globin promoter. We purified protein complexes containing biotin-tagged TR2/TR4 from adult erythroid cells and identified DNMT1, NuRD, and LSD1/CoREST repressor complexes, as well as HDAC3 and TIF1β, all known to confer epigenetic gene silencing, as potential corepressors of TR2/TR4. Coimmunoprecipitation assays of endogenous abundance proteins indicated that TR2/TR4 complexes consist of at least four distinct molecular species. In ChIP assays we found that, in undifferentiated murine adult erythroid cells, many of these corepressors associate with both the embryonic and the adult β-type globin promoters but, upon terminal differentiation, they specifically dissociate only from the adult β-globin promoter concomitant with its activation but remain bound to the silenced embryonic globin gene promoters. These data suggest that TR2/TR4 recruit an array of transcriptional corepressors to elicit adult stage-specific silencing of the embryonic β-type globin genes through coordinated epigenetic chromatin modifications.


Blood | 2011

Notch signaling is a critical regulator of allogeneic CD4+ T-cell responses mediating graft-versus-host disease

Yi Zhang; Ashley R. Sandy; Jina Wang; Vedran Radojcic; Gloria T. Shan; Ivy T. Tran; Ann Friedman; Koji Kato; Shan He; Shuaiying Cui; Elizabeth O. Hexner; Dale Frank; Stephen G. Emerson; Ivan Maillard

Graft-versus-host disease (GVHD) remains the major barrier to the success of allogeneic hematopoietic stem cell transplantation (HSCT). GVHD is caused by donor T cells that mediate host tissue injury through multiple inflammatory mechanisms. Blockade of individual effector molecules has limited efficacy in controlling GVHD. Here, we report that Notch signaling is a potent regulator of T-cell activation, differentiation, and function during acute GVHD. Inhibition of canonical Notch signaling in donor T cells markedly reduced GVHD severity and mortality in mouse models of allogeneic HSCT. Although Notch-deprived T cells proliferated and expanded in response to alloantigens in vivo, their ability to produce interleukin-2 and inflammatory cytokines was defective, and both CD4(+) and CD8(+) T cells failed to up-regulate selected effector molecules. Notch inhibition decreased the accumulation of alloreactive T cells in the intestine, a key GVHD target organ. However, Notch-deprived alloreactive CD4(+) T cells retained significant cytotoxic potential and antileukemic activity, leading to improved overall survival of the recipients. These results identify Notch as a novel essential regulator of pathogenic CD4(+) T-cell responses during acute GVHD and suggest that Notch signaling in T cells should be investigated as a therapeutic target after allogeneic HSCT.


Blood | 2015

The LSD1 inhibitor RN-1 induces fetal hemoglobin synthesis and reduces disease pathology in sickle cell mice.

Shuaiying Cui; Kim Chew Lim; Lihong Shi; Mary Lee; Natee Jearawiriyapaisarn; Greggory Myers; Andrew D. Campbell; David Harro; Shigeki Iwase; Raymond C. Trievel; Angela Rivers; Joseph DeSimone; Donald Lavelle; Yogen Saunthararajah; James Douglas Engel

Inhibition of lysine-specific demethylase 1 (LSD1) has been shown to induce fetal hemoglobin (HbF) levels in cultured human erythroid cells in vitro. Here we report the in vivo effects of LSD1 inactivation by a selective and more potent inhibitor, RN-1, in a sickle cell disease (SCD) mouse model. Compared with untreated animals, RN-1 administration leads to induced HbF synthesis and to increased frequencies of HbF-positive cells and mature erythrocytes, as well as fewer reticulocytes and sickle cells, in the peripheral blood of treated SCD mice. In keeping with these observations, histologic analyses of the liver and spleen of treated SCD mice verified that they do not exhibit the necrotic lesions that are usually associated with SCD. These data indicate that RN-1 can effectively induce HbF levels in red blood cells and reduce disease pathology in SCD mice, and may therefore offer new therapeutic possibilities for treating SCD.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Forced TR2/TR4 expression in sickle cell disease mice confers enhanced fetal hemoglobin synthesis and alleviated disease phenotypes

Andrew D. Campbell; Shuaiying Cui; Lihong Shi; Rebekah Urbonya; Andrea Mathias; Kori Bradley; Kwaku Osei Bonsu; Rhonda R. Douglas; Brittne Halford; Lindsay Schmidt; David Harro; Donald Giacherio; Keiji Tanimoto; Osamu Tanabe; James Douglas Engel

Sickle cell disease (SCD) is a hematologic disorder caused by a missense mutation in the adult β-globin gene. Higher fetal hemoglobin (HbF) levels in red blood cells of SCD patients have been shown to improve morbidity and mortality. We previously found that nuclear receptors TR2 and TR4 repress expression of the human embryonic ε-globin and fetal γ-globin genes in definitive erythroid cells. Because forced expression of TR2/TR4 in murine adult erythroid cells paradoxically enhanced fetal γ-globin gene expression in transgenic mice, we wished to determine if forced TR2/TR4 expression in a SCD model mouse would result in elevated HbF synthesis and thereby alleviate the disease phenotype. In a “humanized” sickle cell model mouse, forced TR2/TR4 expression increased HbF abundance from 7.6% of total hemoglobin to 18.6%, accompanied by increased hematocrit from 23% to 34% and reticulocyte reduction from 61% to 18%, indicating a significant reduction in hemolysis. Moreover, forced TR2/TR4 expression reduced hepatosplenomegaly and liver parenchymal necrosis and inflammation in SCD mice, indicating alleviation of usual pathophysiological characteristics. This article shows that genetic manipulation of nonglobin proteins, or transcription factors regulating globin gene expression, can ameliorate the disease phenotype in a SCD model animal. This proof-of-concept study demonstrates that modulating TR2/TR4 activity in SCD patients may be a promising therapeutic approach to induce persistent HbF accumulation and for treatment of the disease.


Peptides | 2006

Molecular characterization and functional distribution of N-ethylmaleimide-sensitive factor in Helicoverpa armigera

Shuaiying Cui; Wei Hua Xu

N-ethylmaleimide-sensitive fusion protein (NSF) is an essential component for the neurotransmitter or neurohormone release apparatus present in all eukaryotic cells. Here, a new NSF orthologue was characterized from the cotton bollworm, Helicoverpa armigera (Har). Northern blot exhibited a high expression in larval brain. Southern analysis indicated that a single copy of the gene is present in a haploid genome. Using antibodies labeled with fluoresceins, we directly proved that NSF is co-localized with two crucial neurohormones, prothoracicotropic hormone and diapause hormone, both of which regulate insect development. These findings suggest that Har-NSF may be involved in regulating insect neurohormone release.


Human Molecular Genetics | 2014

Developmental transcriptome analysis of human erythropoiesis

Lihong Shi; Yu Hsuan Lin; Michael Sierant; Fan Zhu; Shuaiying Cui; Yuanfang Guan; Maureen A. Sartor; Osamu Tanabe; Kim Chew Lim; James Douglas Engel

To globally survey the changes in transcriptional landscape during terminal erythroid differentiation, we performed RNA sequencing (RNA-seq) on primary human CD34(+) cells after ex vivo differentiation from the earliest into the most mature erythroid cell stages. This analysis identified thousands of novel intergenic and intronic transcripts as well as novel alternative transcript isoforms. After rigorous data filtering, 51 (presumptive) novel protein-coding transcripts, 5326 long and 679 small non-coding RNA candidates remained. The analysis also revealed two clear transcriptional trends during terminal erythroid differentiation: first, the complexity of transcript diversity was predominantly achieved by alternative splicing, and second, splicing junctional diversity diminished during erythroid differentiation. Finally, 404 genes that were not known previously to be differentially expressed in erythroid cells were annotated. Analysis of the most extremely differentially expressed transcripts revealed that these gene products were all closely associated with hematopoietic lineage differentiation. Taken together, this study will serve as a comprehensive platform for future in-depth investigation of human erythroid development that, in turn, may reveal new insights into multiple layers of the transcriptional regulatory hierarchy that controls erythropoiesis.


Biology of Blood and Marrow Transplantation | 2010

Identification of stem cell transcriptional programs normally expressed in embryonic and neural stem cells in alloreactive CD8+ T cells mediating graft-versus-host disease.

Koji Kato; Shuaiying Cui; Rork Kuick; Shin Mineishi; Elizabeth O. Hexner; James L.M. Ferrara; Stephen G. Emerson; Yi Zhang

A hallmark of graft-versus-host-disease (GVHD), a life-threatening complication after allogeneic hematopoietic stem cell transplantation, is the cytopathic injury of host tissues mediated by persistent alloreactive effector T cells (T(E)). However, the mechanisms that regulate the persistence of alloreactive T(E) during GVHD remain largely unknown. Using mouse GVHD models, we demonstrate that alloreactive CD8(+) T(E) rapidly diminished in vivo when adoptively transferred into irradiated secondary congenic recipient mice. In contrast, although alloreactive CD8(+) T(E) underwent massive apoptosis upon chronic exposure to alloantigens, they proliferated in vivo in secondary allogeneic recipients, persisted, and caused severe GVHD. Thus, the continuous proliferation of alloreactive CD8(+) T(E), which is mediated by alloantigenic stimuli rather than homeostatic factors, is critical to maintaining their persistence. Gene expression profile analysis revealed that although alloreactive CD8(+) T(E) increased the expression of genes associated with cell death, they activated a group of stem cell genes normally expressed in embryonic and neural stem cells. Most of these stem cell genes are associated with cell cycle regulation, DNA replication, chromatin modification, and transcription. One of these genes, Ezh2, which encodes a chromatin modifying enzyme, was abundantly expressed in CD8(+) T(E). Silencing Ezh2 significantly reduced the proliferation of alloantigen-activated CD8(+) T cells. Thus, these findings identify that a group of stem cell genes could play important roles in sustaining terminally differentiated alloreactive CD8(+) T(E) and may be therapeutic targets for controlling GVHD.


Haematologica | 2016

The LSD1 inhibitor RN-1 recapitulates the fetal pattern of hemoglobin synthesis in baboons (P. anubis)

Angela Rivers; Kestis Vaitkus; Vinzon Ibanez; Maria Armila Ruiz; Ramasamy Jagadeeswaran; Yogen Saunthararajah; Shuaiying Cui; James Douglas Engel; Joseph DeSimone; Donald Lavelle

Increased fetal hemoglobin levels lessen the severity of symptoms and increase the lifespan of patients with sickle cell disease. Hydroxyurea, the only drug currently approved for the treatment of sickle cell disease, is not effective in a large proportion of patients and therefore new pharmacological agents that increase fetal hemoglobin levels have long been sought. Recent studies identifying LSD-1 as a repressor of γ-globin expression led to experiments demonstrating that the LSD-1 inhibitor RN-1 increased γ-globin expression in the sickle cell mouse model. Because the arrangement and developmental stage-specific expression pattern of the β-like globin genes is highly conserved between man and baboon, the baboon model remains the best predictor of activity of fetal hemoglobin-inducing agents in man. In this report, we demonstrate that RN-1 increases γ-globin synthesis, fetal hemoglobin, and F cells to high levels in both anemic and non-anemic baboons with activity comparable to decitabine, the most potent fetal hemoglobin-inducing agent known. RN-1 not only restores high levels of fetal hemoglobin but causes the individual 5′ Iγ- and 3′ Vγ-globin chains to be synthesized in the ratio characteristic of fetal development. Increased fetal hemoglobin was associated with increased levels of acetylated Histone H3, H3K4Me2, H3K4Me3, and RNA polymerase II at the γ-globin gene, and diminished γ-globin promoter DNA methylation. RN-1 is likely to induce clinically relevant levels of fetal hemoglobin in patients with sickle cell disease, although careful titration of the dose may be required to minimize myelotoxicity.


Molecular and Cellular Biology | 2014

PGC-1 Coactivator Activity Is Required for Murine Erythropoiesis

Shuaiying Cui; Osamu Tanabe; Kim Chew Lim; H. E. Xu; X. E. Zhou; Jingmei Lin; Lihong Shi; Lindsay Schmidt; Andrew D. Campbell; Ritsuko Shimizu; Masayuki Yamamoto; James Douglas Engel

ABSTRACT Peroxisome proliferator-activated receptor gamma (PPARγ) coactivator 1α (PGC-1α) and PGC-1β have been shown to be intimately involved in the transcriptional regulation of cellular energy metabolism as well as other biological processes, but both coactivator proteins are expressed in many other tissues and organs in which their function is, in essence, unexplored. Here, we found that both PGC-1 proteins are abundantly expressed in maturing erythroid cells. PGC-1α and PGC-1β compound null mutant (Pgc-1c) animals express less β-like globin mRNAs throughout development; consequently, neonatal Pgc-1c mice exhibit growth retardation and profound anemia. Flow cytometry shows that the number of mature erythrocytes is markedly reduced in neonatal Pgc-1c pups, indicating that erythropoiesis is severely compromised. Furthermore, hematoxylin and eosin staining revealed necrotic cell death and cell loss in Pgc-1c livers and spleen. Chromatin immunoprecipitation studies revealed that both PGC-1α and -1β, as well as two nuclear receptors, TR2 and TR4, coordinately bind to the various globin gene promoters. In addition, PGC-1α and -1β can interact with TR4 to potentiate transcriptional activation. These data provide new insights into our understanding of globin gene regulation and raise the interesting possibility that the PGC-1 coactivators can interact with TR4 to elicit differential stage-specific effects on globin gene transcription.

Collaboration


Dive into the Shuaiying Cui's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lihong Shi

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Angela Rivers

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

David Harro

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Donald Lavelle

University of Illinois at Chicago

View shared research outputs
Researchain Logo
Decentralizing Knowledge