Shuang-Hu Wang
Wenzhou Medical College
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shuang-Hu Wang.
Acta Pharmacologica Sinica | 2013
Da-Peng Dai; Yu-han Wang; Shuang-Hu Wang; Peiwu Geng; Li-Ming Hu; Guo-xin Hu; Jian-Ping Cai
Aim:Cytochrome P450 2C9 (CYP2C9) is a polymorphic enzyme that is responsible for the metabolism of approximately 15% of clinically important drugs. The aim of this study was to assess the catalytic characteristics of 37 CYP2C9 allelic isoforms found in Chinese Han population on the metabolism of tolbutamide in vitro.Methods:The wild-type and 36 CYP2C9 variants were expressed in sf21 insect cells using a baculovirus-mediated expression system. Then the insect microsomes were prepared for assessing the metabolic characteristics of each variant toward the CYP2C9-specific drug substrate tolbutamide.Results:Of 36 allelic variants tested, the intrinsic clearance values of 2 allelic isoforms (CYP2C9.36 and CYP2C9.51) were much higher than the wild-type CYP2C9.1 protein, 3 allelic isoforms (CYP2C9.11, CYP2C9.56 and N418T) exhibited similar intrinsic clearance values as the wild-type enzyme, whereas the other 31 variants showed significantly reduced intrinsic clearance values, ranging from 0.08% to 66.88%, for tolbutamide.Conclusion:Our study provides the most comprehensive data concerning the enzymatic activity of the CYP2C9 variants that are present in the Chinese Han population, and our data suggest that most of the carriers of these alleles might be paid more attention when using CYP2C9 mediated drugs clinically.
Basic & Clinical Pharmacology & Toxicology | 2014
Da-Peng Dai; Shuang-Hu Wang; Peiwu Geng; Guoxin Hu; Jian-Ping Cai
Of the 57 reported CYP2C9 alleles, to date, 36 of them have been identified in the Chinese population. The aim of this study was to assess the catalytic characteristics of these allelic isoforms and their effects on the metabolism of glimepiride in vitro. Baculovirus‐mediated expressing system was used to highly express wild‐type and the 35 CYP2C9 allelic variants in insect cell microsomes. Then, the enzymatic characteristics of each variant were evaluated using glimepiride as the substrate. Reactions were performed at 37°C with the insect microsomes and 0.125–10 μM glimepiride for 40 min. After termination, the products were extracted and used for signal collection by LC‐MS/MS. Of the 36 tested CYP2C9 allelic isoforms, only four variants (CYP2C9.40, CYP2C9.47, CYP2C9.51 and CYP2C9.54) exhibited similar relative clearance values to that of wild‐type CYP2C9.1. In addition, one variant (CYP2C9.36) showed a higher intrinsic clearance value than the wild‐type protein, while the remaining 30 CYP2C9 allelic isoforms exhibited significantly decreased clearance values (from 0.1% to 87.2%) compared to CYP2C9.1. This study provided the most comprehensive data on the enzymatic activities of all reported CYP2C9 variants in the Chinese population with regard to the commonly used antidiabetic drug, glimepiride. Our results indicate that most of the tested rare alleles significantly decrease the catalytic activity of CYP2C9 variants towards glimepiride hydroxylation in vitro.
Xenobiotica | 2014
Yu-han Wang; Pei-Pei Pan; Da-Peng Dai; Shuang-Hu Wang; Peiwu Geng; Jian-Ping Cai; Guoxin Hu
Abstract 1. CYP2C9 is an important member of the cytochrome P450 enzyme superfamily, with 57 CYP2C9 allelic variants being previously reported. Among these variants, we recently identified 21 novel alleles (*36–*56) in the Han Chinese population. The aim of this study was to assess the catalytic activities of 36 CYP2C9 variants found in the Chinese population toward losartan in vitro. 2. Insect microsomes expressing the 36 CYP2C9 variants were incubated with 0.5–25 μM losartan for 30 min at 37 °C. Next, the products were extracted, and signal detection was performed using high-performance liquid chromatography. 3. Compared with wild-type CYP2C9.1, the intrinsic clearance (Vmax/Km) values of all variants except for CYP2C9.56 were significantly altered. One variant exhibited markedly increased values (>250%), whereas 33 variants exhibited significantly decreased values (from 20 to 96%) due to increased Km and/or decreased Vmax values. 4. These findings suggest that more attention should be paid to subjects carrying these infrequent CYP2C9 alleles when administering losartan in the clinic.
Basic & Clinical Pharmacology & Toxicology | 2015
Da-Peng Dai; Peiwu Geng; Shuang-Hu Wang; Jie Cai; Li-Ming Hu; Jing-Jing Nie; Ji-Hong Hu; Guo-Xin Hu; Jian-Ping Cai
Cytochrome P450 2D6 (CYP2D6) is one of the most widely investigated CYPs related to genetic polymorphisms and is responsible for one‐quarter of the currently used clinical drugs. We previously detected 22 novel, non‐synonymous, mutated sites in the Chinese population, but nothing is known about the functional effects of these mutations in terms of specific CYP2D6 substrates. In this study, wild‐type CYP2D6, two common allelic variants and 22 newly reported CYP2D6 isoforms were transiently expressed in 293FT cells, and the enzymatic activities of these variants were systematically assessed using dextromethorphan and bufuralol as the probing substrates. Consequently, 19 and 21 allelic variants were found to exhibit significantly decreased enzymatic activities for dextromethorphan and bufuralol, respectively. Of 22 novel CYP2D6 variants, six allelic isoforms (CYP2D6.89, CYP2D6.92, CYP2D6.93, CYP2D6.96, E215K and R440C) exhibited absent or extremely reduced metabolic activities compared with those observed for the wild‐type enzyme. Our in vitro functional data can be useful for CYP2D6 phenotype prediction and provide valuable information for the study of clinical impact of these newly found CYP2D6 variants in China.
Basic & Clinical Pharmacology & Toxicology | 2016
Jie Cai; Da-Peng Dai; Peiwu Geng; Shuang-Hu Wang; Hao Wang; Yunyun Zhan; Xiang-Xin Huang; Guo-Xin Hu; Jian-Ping Cai
Cytochrome P450 2D6 (CYP2D6) is a highly polymorphic enzyme that metabolizes a large number of therapeutic drugs. To date, more than 100 CYP2D6 allelic variants have been reported. Among these variants, we recently identified 22 novel variants in the Chinese population. The aim of this study was to functionally characterize the enzymatic activity of these variants in vitro. A baculovirus‐mediated expression system was used to express wild‐type CYP2D6.1 and other variants (CYP2D6.2, CYP2D6.10 and 22 novel CYP2D6 variants) at high levels. Then, the insect microsomes containing expressed CYP2D6 proteins were incubated with bufuralol or dextromethorphan at 37°C for 20 or 25 min., respectively. After termination, the metabolites were extracted and used for the detection with high‐performance liquid chromatography. Among the 24 CYP2D6 variants tested, two variants (CYP2D6.92 and CYP2D6.96) were found to be catalytically inactive. The remaining 22 variants exhibited significantly decreased intrinsic clearance values for bufuralol 1′‐hydroxylation and 20 variants showed significantly lower intrinsic clearance values for dextromethorphan O‐demethylation than those of the wild‐type CYP2D6.1. Our in vitro results suggest that most of the variants exhibit significantly reduced catalytic activities compared with the wild‐type, and these data provide valuable information for personalized medicine in Chinese and other Asian populations.
Xenobiotica | 2015
Da-Peng Dai; Li-Ming Hu; Peiwu Geng; Shuang-Hu Wang; Jie Cai; Guo-Xin Hu; Jian-Ping Cai
Abstract 1. CYP2C19 is a highly polymorphic enzyme responsible for the metabolism of a wide range of clinical drugs. Alterations to the CYP2C19 gene contribute to the variability of CYP2C19 enzyme activity, which causes pharmacokinetics and drug efficacies to vary and adverse drug reactions to occur in different persons. Recently, we identified 24 novel CYP2C19 allelic variants in the Chinese Han population. The purpose of present study is to assess the impact of these newly found nucleotide mutations on the enzymatic activity of the CYP2C19 protein. 2. Dual-expression vectors were constructed and transiently transfected into 293FT cells. Forty-eight hours after transfection, cells were re-suspended and incubated with two typical probe substrates, omeprazole and S-mephenytoin, to determine the activities of each variant relative to the wild-type protein. 3. Immunoblotting results showed that the protein expression levels of the CYP2C19 variants were diverse. Enzymatic ability analysis showed that the variant 35FS exhibited no functional activity, and most of the other variants showed significantly decreased metabolic activities toward both omeprazole and S-mephenytoin compared with wild-type. 4. These findings greatly enrich the knowledge of biological effects of these newly found CYP2C19 mutations and aid the application of this knowledge to future individualized drug therapy in clinic.
Pharmacology | 2015
Sai-Zhen Chen; Pei-Pei Pan; Shuang-Hu Wang; Jun Luo; Guo-Xin Hu; Shan-Shan Xu; Lu Zhang; Yin-Fei Yu
Background: Losartan and glimepiride are commonly used drugs to treat chronic diseases of hypertension and diabetes; they are both substrates of CYP2C9. The aim of the present study was to investigate the possible interaction of losartan and glimepiride both in vitro (rat liver microsomes) and in vivo (healthy Sprague-Dawley rats). Methods: In rat liver microsomes, 1-10 μmol/l losartan and glimepiride were coincubated, and the inhibitory effect was analyzed. In the subsequent pharmacokinetic study, 15 healthy Sprague-Dawley rats received administrations of 5 mg/kg losartan or 1 mg/kg glimepiride or a coadministration. Results: In the rat liver microsome system, glimepiride showed a slight inhibition of losartan at concentrations of 1-10 μmol/l, whereas losartan exhibited no inhibitory effect on glimepiride. In vivo, glimepiride did not modify the plasma concentration of losartan and its metabolite E-3174. The alteration of an increased AUC and Cmax was observed in the pharmacokinetic parameters of glimepiride and hydroxy glimepiride. Conclusions: Glimepiride did not affect losartan pharmacokinetics in rats, while losartan potently altered glimepiride metabolism; this result was inconsistent with the in vitro outcome. The mechanism requires further investigation. In clinical settings, attention should be paid to the interaction of these two drugs in the human body as well as the possible adverse reactions of glimepiride.
Drug Metabolism and Disposition | 2015
Guo-Xin Hu; Pei-Pei Pan; Zeng-Shou Wang; Li-Ping Yang; Da-Peng Dai; Shuang-Hu Wang; Guang-Hui Zhu; Xiangjun Qiu; Tao Xu; Jun Luo; Qing-Quan Lian; Ren-Shan Ge; Jian-Ping Cai
Our previous study detected totally 35 CYP2C9 allelic variants in 2127 Chinese subjects, of whom 21 novel alleles were reported for the first time in Chinese populations. The aim of the present study was to characterize the 13 CYP2C9 allelic variants both in vitro and in vivo. Different types of CYP2C9 variants were highly expressed in COS-7 cells, and 50 μM tolbutamide was added as the probing substrate to evaluate their metabolic abilities in vitro. Subsequently, the concentrations of tolbutamide and its metabolite in the plasma and urine within individuals with different types of genotypes were determined by HPLC to evaluate the catalytic activity of the 13 mutant CYP2C9 proteins in vivo. Our results showed that compared with *1/*1 wild-type subjects, subjects with *1/*40 genotype showed increased oral clearance (CL/F), whereas individuals with *1/*3, *1/*13, *3/*3, *3/*13, *1/*16, *1/*19, *1/*34, *1/*42, *1/*45, *1/*46, and *1/*48 genotype exhibited significantly decreased CL/F, and those with *1/*27, *1/*29, *1/*40, and *1/*41 genotype presented similar CL/F value. When expressed in COS-7 cells, the CYP2C9 variants showed similar pattern to the results in clinical study. The study suggests that, besides two typical defective alleles, *3 and *13, seven CYP2C9 allelic variants (*16, *19, *34, *42, *45, *46, and *48) cause defective effects on the enzymatic activities both in vitro and in vivo. In clinic, patients with these defective alleles should be paid close attention to.
Drug Metabolism and Disposition | 2015
Da-Peng Dai; Shuang-Hu Wang; Chuan-Bao Li; Peiwu Geng; Jie Cai; Hao Wang; Guo-Xin Hu; Jian-Ping Cai
CYP2C9, one of the most important drug-metabolizing enzymes, is responsible for metabolizing approximately 15% of clinically important drugs, including warfarin, diclofenac, and losartan. Similar to other CYP members, human CYP2C9 exhibits marked genetic polymorphisms among individuals of different ethnicities. In this study, a novel missense mutation (1300A>T) was identified in a warfarin-sensitive patient after a genetic screen of three candidate genes related to high variability in response to warfarin doses. This base transversion leads to an Ile-to-Phe amino acid substitution at codon 434 within the CYP2C9 protein, and this new variant has been named a novel allele, CYP2C9*59, by the Human CYP Allele Nomenclature Committee (http://www.cypalleles.ki.se/cyp2c9.htm). The exogenous expression of CYP2C9.59 in insect cell microsomes revealed that, despite a similar protein expression level as wild-type CYP2C9, variant CYP2C9.59 exhibited significantly reduced maximal velocity, Vmax, and/or increased Michaelis constant, Km, values toward three CYP2C9-specific substrates. Our data suggest that the 1300A>T mutation can greatly decrease the enzymatic activity of the CYP2C9 protein both in vitro and in vivo.
Pharmacogenomics | 2015
Da-Peng Dai; Chuan-Bao Li; Shuang-Hu Wang; Jie Cai; Peiwu Geng; Yunfang Zhou; Guo-Xin Hu; Jian-Ping Cai
AIM To determine the genetic basis of the low warfarin dose requirement in a Chinese patient. MATERIALS & METHODS Bi-directional sequencing of CYP2C9, VKORC1 and CYP4F2 genes was performed. CYP2C9 variants were highly expressed in yeast and insect-cell microsomes. Three typical CYP2C9 probe drugs were used to evaluate the catalytic activity. RESULTS A novel missense mutation (1400 T>C) was identified in CYP2C9 and had been named as new allele *60. When expressed in yeast and insect cells, compared with wild-type enzyme, variant CYP2C9.60 exhibited lower protein expression capacity and showed significantly decreased metabolic activities for the hydroxylation of S-warfarin, tolbutamide and diclofenac. CONCLUSION The novel mutation can greatly decrease the enzymatic activity of the CYP2C9 enzyme both in vitro and in vivo.