Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shuang Jiang is active.

Publication


Featured researches published by Shuang Jiang.


Optics Express | 2013

Resonant absorption and scattering suppression of localized surface plasmons in Ag particles on green LED

Shuang Jiang; Zhe Hu; Zhizhong Chen; Xingxing Fu; Xianzhe Jiang; Qianqian Jiao; Tongjun Yu; Guoyi Zhang

The metallic-structure dependent localized surface plasmons (LSPs) coupling behaviors with InGaN QWs in a green LED epitaxial wafer are investigated by optical transmission, scanning electron microscopy (SEM) and photoluminescence (PL) measurements. Ag nanoparticles (NPs) are formed by thermal annealing Ag layer on the green LED wafer. SEM images show that for higher annealing temperature and/or thicker deposited Ag layer, larger Ag NPs can be produced, leading to the redshift of absorption peaks in the transmission spectra. Time resolved PL (TRPL) measurements indicate when LSP-MQW coupling occurs, PL decay rate is greatly enhanced especially at the resonant wavelength 560 nm. However, the PL intensity is suppressed by 3.5 folds compared to the bare LED. The resonant absorption and PL suppression are simulated by three dimension finite-difference-time-domain (FDTD), which suggests that Ag particle with smaller size and lower height lead to the larger dissipation of LSP.


CrystEngComm | 2015

Study on the morphology and shape control of volcano-shaped patterned sapphire substrates fabricated by imprinting and wet etching

Shuang Jiang; Z. Z. Chen; Xianzhe Jiang; Xingxing Fu; Shengxiang Jiang; Qianqian Jiao; Tongjun Yu; G. Y. Zhang

A volcano-shaped patterned sapphire substrate (VPSS) was fabricated by imprinting lithography and wet etching to enhance the light output of LED devices. A hexagonally arranged pattern with different crystal orientations was imprinted onto the sapphire substrate. As the etching time increased, the pattern with a crater in its center was changed from truncated triangular pyramids to truncated hexagonal pyramids with symmetrical sidewall facets. Small craters surrounded by three {108} facets appeared with 3-fold or 6-fold symmetry at the boundaries with neighboring pyramids. The mechanism of sapphire wet etching for VPSS synthesis was correlated to thermodynamics limits and the SiO2 mask pattern. The as-fabricated VPSS with slant angles of 34.3° and 69.9° was considered to enhance the internal quantum efficiency (IQE) and light extraction efficiency (LEE) of GaN-based LEDs.


IEEE Photonics Technology Letters | 2015

Fabrication and Effects of Ag Nanoparticles Hexagonal Arrays in Green LEDs by Nanoimprint

Shuang Jiang; Zhizhong Chen; Xingxing Fu; Qianqian Jiao; Yulong Feng; Wei Yang; Jian Ma; Junze Li; Shengxiang Jiang; Tongjun Yu; Guoyi Zhang

In this letter, the Ag nanoparticles (NPs), which are located inside the hexagonal photonic crystals (PhCs) array holes, are successfully fabricated in green light-emitting diode (LED) by nanoimprint and lift-off techniques. The photoluminescence intensity of the green LED is increased by 4.5 folds compared with that of the bare LED due to the PhCs effect and the localized surface plasmon (LSP) multiple quantum wells coupling effect, which is further confirmed by the enhanced decay rate of LSP-functioned LED. In the simulation of 3-D finite difference time domain, it reveals that the morphology of Ag NP will affect the LSP resonant strength and the light scattering efficiency besides the periodic structure.


CrystEngComm | 2015

Silane controlled three dimensional GaN growth and recovery stages on a cone-shape nanoscale patterned sapphire substrate by MOCVD

Junze Li; Z. Z. Chen; Qianqian Jiao; Yulong Feng; Shuang Jiang; Yiyong Chen; Tongjun Yu; Shunfeng Li; Guoyi Zhang

Three dimensional (3D) growth induced by silane was performed on cone-shape nano-scale patterned sapphire substrates (NPSS) by metal organic chemical vapor deposition (MOCVD). The growth evolution for the silane controlled 3D growth process and the recovery stage were investigated by a series of growth interruptions. The GaN epilayers grown on the templates with different 3D growth conditions were characterized by X-ray diffraction (XRD), Raman scattering, and atomic force microscopy (AFM) measurements. The full width at half maximums (FWHMs) of the (002) and (102) reflections in the XRD rocking curves were 267 and 324 arcsec, respectively, for the sample on NPSS with 600 s of 3D growth. An extremely smooth surface was achieved with an average roughness of 0.10 nm over 3 × 3 μm2. All the above data were superior to those for the planar sample or the NPSS ones without the optimized 3D growth time. The silane addition caused effective 3D growth. The size, homogeneity, and faceted sidewalls of the islands by the 3D growth led to a high crystalline quality, much strain relaxation and a specular surface for the GaN epilayers.


Plasmonics | 2016

The Coupling Behavior of Multiple Dipoles and Localized Surface Plasmons in Ag Nanoparticles Array

Shuang Jiang; Zhizhong Chen; Yulong Feng; Qianqian Jiao; Xingxing Fu; Jian Ma; Junze Li; Shengxiang Jiang; Tongjun Yu; Guoyi Zhang

In this work, the coupling behavior of multiple dipoles and localized surface plasmons (LSPs) in Ag nanoparticle arrays is explored based on experimental results and 3D finite difference time domain (FDTD) simulations. The Ag nanoparticles (NPs) located inside the hexagonal photonic crystal (PhC) array holes are embedded in a green light-emitting diode (LED), which enhances emission efficiency significantly. In the simulation of the 3D FDTD, five spaced x-polarized dipoles are approximated as five quantum wells. The internal quantum efficiency (IQE) and light extraction efficiency (LEE) of the LSP-coupled LED are deduced respectively from the original IQE of the bare LED and the FDTD simulation results. Besides, the dynamic LSP-dipole coupling behavior is also explored considering the interaction of the five dipoles and their feedback effect to LSP, which lead to the magnification of the LSP-dipole coupling enhancement effect and the reduction of energy dissipation in Ag NPs.


Optics Express | 2015

Capability of GaN based micro-light emitting diodes operated at an injection level of kA/cm2

Qianqian Jiao; Z. Z. Chen; J. Ma; S. Y. Wang; Yongxiao Li; Shuang Jiang; Yulong Feng; Junze Li; Yuanxiang Chen; Tongjun Yu; Shengming Wang; G. Y. Zhang; Pengfei Tian; Enyuan Xie; Zheng Gong; Erdan Gu; Martin D. Dawson

Different size InGaN/GaN based micro-LEDs (μLEDs) are fabricated. An extremely high injection level above 16 kA/cm2 is achieved for 10 μm-diameter LED. The lateral current density and carrier distributions of the μLEDs are simulated by APSYS software. Streak camera time resolved photoluminescence (TRPL) results show clear evidence that the band-gap renormalization (BGR) effect is weakened by strain relaxation in smaller size μLEDs. BGR affects the relaxation of free carriers on the conduction band bottom in multiple quantum wells (MQWs), and then indirectly affects the recombination rate of carriers. An energy band model based on BGR effect is made to explain the high-injection-level phenomenon for μLEDs.


Nanomaterials | 2018

Study on the Coupling Mechanism of the Orthogonal Dipoles with Surface Plasmon in Green LED by Cathodoluminescence

Yulong Feng; Zhizhong Chen; Shuang Jiang; Chengcheng Li; Yifan Chen; Jinglin Zhan; Yiyong Chen; Jingxin Nie; Fei Jiao; Xiangning Kang; Shunfeng Li; Tongjun Yu; Guoyi Zhang; Bo Shen

We analyzed the coupling behavior between the localized surface plasmon (LSP) and quantum wells (QWs) using cathodoluminescence (CL) in a green light-emitting diodes (LED) with Ag nanoparticles (NPs) filled in photonic crystal (PhC) holes. Photoluminescence (PL) suppression and CL enhancement were obtained for the same green LED sample with the Ag NP array. Time-resolved PL (TRPL) results indicate strong coupling between the LSP and the QWs. Three-dimensional (3D) finite difference time domain (FDTD) simulation was performed using a three-body model consisting of two orthogonal dipoles and a single Ag NP. The LSP–QWs coupling effect was separated from the electron-beam (e-beam)–LSP–QW system by linear approximation. The energy dissipation was significantly reduced by the z-dipole introduction under the e-beam excitation. In this paper, the coupling mechanism is discussed and a novel emission structure is proposed.


Applied Physics Letters | 2017

Modification of far-field radiation pattern by shaping InGaN/GaN nanorods

Qianqian Jiao; Z. Z. Chen; Yuxia Feng; Shuailong Zhang; Sibai Li; Shuang Jiang; Junze Li; Yuanxiang Chen; Tongjun Yu; X. N. Kang; E. Gu; B. Shen; Guoying Zhang

In this work, we report on the fabrication of “golftee,” “castle,” and “pillar” shaped InGaN/GaN nanorod light-emitting diode (LED) arrays with a typical rod diameter of 200 nm based on nanoimprint lithography, dry etching, and wet etching. The photoluminescence (PL) integral intensities per active region area for “golftee,” “castle,” and “pillar” shaped nanorod samples were found to be 2.6, 1.9, and 2.2 times stronger than that of a conventional planar LED. Additionally, the far-field radiation patterns of the three different shaped nanorod samples were investigated based on angular resolved PL (ARPL) measurements. It was found that the sharp lobes appeared at certain angles in the ARPL curve of the “golftee” sample, while broad lobes were observed in the ARPL curves of the “castle” and “pillar” samples. Further analysis suggests that the shorter PL lifetime and smaller spectral width of the “golftee” sample were due to the coupling of photon modes with excitons, which also led to the observed high effic...


CrystEngComm | 2012

Changing oblique angles of pyramid facets fabricated by wet etching of N polar GaN

Feng Yu; Zhizhong Chen; Shengli Qi; Suyuan Wang; Shuang Jiang; Xingxing Fu; Xianzhe Jiang; Tongjun Yu; Zhixin Qin; Xiangning Kang; Jiejun Wu; Guoyi Zhang

Wet etching was performed on N polar GaN, which was fabricated by laser lift-off from a sapphire substrate. Dodecagonal pyramids appeared on the N-polar GaN surface after immersion into hot H3PO4 solution even if it had been etched previously with hot KOH solution. According to the symmetry of the space group of C6v4-P6mc, the oblique angle and crystallographic plane indices of the pyramid facets were obtained. It was observed that the oblique angles of the etched facets decreased from the tip to the base of the pyramids. The etching rate was fast when the etching temperature was above 130 °C, and the oblique angle at the base was reduced. The enhancement of light output with increasing etching temperature has been confirmed. The polarization charges on the different facets were assigned to a kinetics-limited process by the special behavior of the hot H3PO4 etching.


Physica Status Solidi (c) | 2014

Morphology evolution of MOCVD grown GaN epitaxial layers on nanoPSS

Xianzhe Jiang; Zhizhong Chen; Junze Li; Shuang Jiang; Xiangning Kang; Guoyi Zhang

Collaboration


Dive into the Shuang Jiang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge