Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shuangchun Wen is active.

Publication


Featured researches published by Shuangchun Wen.


Optics Express | 2014

Molybdenum disulfide (MoS_2) as a broadband saturable absorber for ultra-fast photonics

Han Zhang; Shunbin Lu; J. Zheng; Juan Du; Shuangchun Wen; D. Y. Tang; Kian Ping Loh

The nonlinear optical property of few-layered MoS₂ nanoplatelets synthesized by the hydrothermal exfoliation method was investigated from the visible to the near-infrared band using lasers. Both open-aperture Z-scan and balanced-detector measurement techniques were used to demonstrate the broadband saturable absorption property of few-layered MoS₂. To explore its potential applications in ultrafast photonics, we fabricated a passive mode locker for ytterbium-doped fibre laser by depositing few-layered MoS₂ onto the end facet of optical fiber by means of an optical trapping approach. Our laser experiment shows that few-layer MoS₂-based mode locker allows for the generation of stable mode-locked laser pulse, centered at 1054.3 nm, with a 3-dB spectral bandwidth of 2.7 nm and a pulse duration of 800 ps. Our finding suggests that few-layered MoS₂ nanoplatelets can be useful nonlinear optical material for laser photonics devices, such as passive laser mode locker, Q-switcher, optical limiter, optical switcher and so on.


Applied Physics Letters | 2012

Ultra-short pulse generation by a topological insulator based saturable absorber

Chujun Zhao; Han Zhang; Xiang Qi; Yu Chen; Zhiteng Wang; Shuangchun Wen; Dingyuan Tang

Under strong laser radiation, a Dirac material, the topological insulator (TI) Bi2Te3, exhibits an optical transmittance increase as a result of saturable absorption. Based on an open-aperture Z-scan measurement at 1550 nm, we clearly show that the TI, Bi2Te3 under our investigation, is indeed a very-high-modulation-depth (up to 95%) saturable absorber. Furthermore, a TI based saturable absorber device was fabricated and used as a passive mode locker for ultrafast pulse formation at the telecommunication band. This contribution unambiguously shows that apart from its fantastic electronic property, a TI (Bi2Te3) may also possess attractive optoelectronic property for ultrafast photonics.


Optics Express | 2015

Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation

Yu Chen; Guobao Jiang; Shuqing Chen; Zhinan Guo; Xue-Feng Yu; Chujun Zhao; Han Zhang; Qiaoliang Bao; Shuangchun Wen; Dingyuan Tang; Dianyuan Fan

Black phosphorus (BP), an emerging narrow direct band-gap two-dimensional (2D) layered material that can fill the gap between the semi-metallic graphene and the wide-bandgap transition metal dichalcogenides (TMDs), had been experimentally found to exhibit the saturation of optical absorption if under strong light illumination. By taking advantage of this saturable absorption property, we could fabricate a new type of optical saturable absorber (SA) based on mechanically exfoliated BPs, and further demonstrate the applications for ultra-fast laser photonics. Based on the balanced synchronous twin-detector measurement method, we have characterized the saturable absorption property of the fabricated BP-SAs at the telecommunication band. By incorporating the BP-based SAs device into the all-fiber Erbium-doped fiber laser cavities, we are able to obtain either the passive Q-switching (with maximum pulse energy of 94.3 nJ) or the passive mode-locking operation (with pulse duration down to 946 fs). Our results show that BP could also be developed as an effective SA for pulsed fiber or solid-state lasers.


Optics Express | 2015

Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material.

Shunbin Lu; Lili Miao; Zhinan Guo; X. Qi; Chujun Zhao; Han Zhang; Shuangchun Wen; D. Y. Tang; Dianyuan Fan

Black phosphorous (BP), the most thermodynamically stable allotrope of phosphorus, is a high-mobility layered semiconductor with direct band-gap determined by the number of layers from 0.3 eV (bulk) to 2.0 eV (single layer). Therefore, BP is considered as a natural candidate for broadband optical applications, particularly in the infrared (IR) and mid-IR part of the spectrum. The strong light-matter interaction, narrow direct band-gap, and wide range of tunable optical response make BP as a promising nonlinear optical material, particularly with great potentials for infrared and mid-infrared opto-electronics. Herein, we experimentally verified its broadband and enhanced saturable absorption of multi-layer BP (with a thickness of ~10 nm) by wide-band Z-scan measurement technique, and anticipated that multi-layer BPs could be developed as another new type of two-dimensional saturable absorber with operation bandwidth ranging from the visible (400 nm) towards mid-IR (at least 1930 nm). Our results might suggest that ultra-thin multi-layer BP films could be potentially developed as broadband ultra-fast photonics devices, such as passive Q-switcher, mode-locker, optical switcher etc.


Optics Express | 2012

Wavelength-tunable picosecond soliton fiber laser with Topological Insulator: Bi 2 Se 3 as a mode locker

Chujun Zhao; Yanhong Zou; Yu Chen; Zhiteng Wang; Shunbin Lu; Han Zhang; Shuangchun Wen; Dingyuan Tang

Based on the open-aperture Z-scan measurement, we firstly uncovered the saturable absorption property of the topological insulator (TI): Bi2Se3. A high absolute modulation depth up to 98% and a saturation intensity of 0.49 GWcm(-2) were identified. By incorporating this novel saturable absorber material into an erbium-doped fiber laser, wavelength tunable soliton operation was experimentally demonstrated. Our result indicates that like the atomic layer graphene, the topological insulator Bi2Se3 could also operate as an effective saturable absorber for the passive mode locking of lasers at the telecommunication band.


Scientific Reports | 2015

Ytterbium-doped fiber laser passively mode locked by few-layer Molybdenum Disulfide (MoS2) saturable absorber functioned with evanescent field interaction

Juan Du; Qingkai Wang; Guobao Jiang; Changwen Xu; Chujun Zhao; Yuanjiang Xiang; Yu Chen; Shuangchun Wen; Han Zhang

By coupling few-layer Molybdenum Disulfide (MoS2) with fiber-taper evanescent light field, a new type of MoS2 based nonlinear optical modulating element had been successfully fabricated as a two-dimensional layered saturable absorber with strong light-matter interaction. This MoS2-taper-fiber device is not only capable of passively mode-locking an all-normal-dispersion ytterbium-doped fiber laser and enduring high power laser excitation (up to 1 W), but also functions as a polarization sensitive optical modulating component (that is, different polarized light can induce different nonlinear optical response). Thanks to the combined advantages from the strong nonlinear optical response in MoS2 together with the sufficiently-long-range interaction between light and MoS2, this device allows for the generation of high power stable dissipative solitons at 1042.6 nm with pulse duration of 656 ps and a repetition rate of 6.74 MHz at a pump power of 210 mW. Our work may also constitute the first example of MoS2-enabled wave-guiding photonic device, and potentially give some new insights into two-dimensional layered materials related photonics.


Optics Letters | 2013

2 GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber

Zhi-Chao Luo; Meng Liu; Hao Liu; Xu-Wu Zheng; Ai-Ping Luo; Chujun Zhao; Han Zhang; Shuangchun Wen; Wen-Cheng Xu

We report on the generation of passive harmonic mode locking of a fiber laser using a microfiber-based topological insulator (TI) Bi(2)Te(3) saturable absorber (SA). The optical deposition method was employed to fabricate the microfiber-based TISA. By virtue of the excellent nonlinear optical property of the proposed TISA, the fiber laser could operate at the pulse repetition rate of 2.04 GHz under a pump power of 126 mW, corresponding to the 418th harmonic of fundamental repetition frequency. The results demonstrate that the microfiber-based TI photonic device can operate as both the high nonlinear optical component and the SA in fiber lasers, and could also find other applications in the related fields of photonics.


Optics Express | 2013

Third order nonlinear optical property of Bi 2 Se 3

Shunbin Lu; Chujun Zhao; Yanhong Zou; Shuqing Chen; Yu Chen; Ying Li; Han Zhang; Shuangchun Wen; Dingyuan Tang

The third order nonlinear optical property of Bi₂Se₃, a kind of topological insulator (TI), has been investigated under femto-second laser excitation. The open and closed aperture Z-scan measurements were used to unambiguously distinguish the real and imaginary part of the third order optical nonlinearity of the TI. When excited at 800 nm, the TI exhibits saturable absorption with a saturation intensity of 10.12 GW/cm² and a modulation depth of 61.2%, and a giant nonlinear refractive index of 10⁻¹⁴ m²/W, almost six orders of magnitude larger than that of bulk dielectrics. This finding suggests that the TI:Bi₂Se₃ is indeed a promising nonlinear optical material and thus can find potential applications from passive laser mode locker to optical Kerr effect based photonic devices.


Archive | 2013

Third order nonlinear optical property of Bi2Se3

Shunbin Lu; Chujun Zhao; Yanhong Zou; Shuqing Chen; Yu Chen; Ying Li; Han Zhang; Shuangchun Wen; Dingyuan Tang

The third order nonlinear optical property of Bi₂Se₃, a kind of topological insulator (TI), has been investigated under femto-second laser excitation. The open and closed aperture Z-scan measurements were used to unambiguously distinguish the real and imaginary part of the third order optical nonlinearity of the TI. When excited at 800 nm, the TI exhibits saturable absorption with a saturation intensity of 10.12 GW/cm² and a modulation depth of 61.2%, and a giant nonlinear refractive index of 10⁻¹⁴ m²/W, almost six orders of magnitude larger than that of bulk dielectrics. This finding suggests that the TI:Bi₂Se₃ is indeed a promising nonlinear optical material and thus can find potential applications from passive laser mode locker to optical Kerr effect based photonic devices.


Optics Express | 2012

Microwave and optical saturable absorption in graphene

Zhiwei Zheng; Chujun Zhao; Shunbin Lu; Yu Chen; Ying Li; Han Zhang; Shuangchun Wen

We report on the first experiments on saturable absorption in graphene at microwave frequency band. Almost independent of the incident frequency, microwave absorbance of graphene always decreases with increasing the power and reaches at a constant level for power larger than 80 µW, evidencing the microwave saturable absorption property of graphene. Optical saturable absorption of the same graphene sample was also experimentally confirmed by an open-aperture Z-scan technique by one laser at telecommunication band and another pico-second laser at 1053 nm, respectively. Herein, we are able to conclude that graphene is indeed a broadband saturable absorber that can operate at both microwave and optical band.

Collaboration


Dive into the Shuangchun Wen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chujun Zhao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge