Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shuanghong Lü is active.

Publication


Featured researches published by Shuanghong Lü.


Tissue Engineering Part A | 2009

Functional improvement of infarcted heart by co-injection of embryonic stem cells with temperature-responsive chitosan hydrogel.

Wenning Lu; Shuanghong Lü; Haibin Wang; Dexue Li; Cuimi Duan; Zhiqiang Liu; Tong Hao; Wenjun He; Bin Xu; Qiang Fu; Ying C. Song; Xiao-Hua Xie; Changyong Wang

Transplantation of embryonic stem cells (ESCs) can improve cardiac function in treatment of myocardial infarction. The low rate of cell retention and survival within the ischemic tissues makes the application of cell transplantation techniques difficult. In this study, we used a temperature-responsive chitosan hydrogel (as scaffold) combined with ESCs to maintain viable cells in the infarcted tissue. Temperature-responsive chitosan hydrogel was prepared and injected into the infarcted heart wall of rat infarction models alone or together with mouse ESCs. The result showed that the 24-h cell retention and 4 week graft size of both groups was significantly greater than with a phosphate buffered saline control. After 4 weeks of implantation, heart function, wall thickness, and microvessel densities within the infarct area improved in the chitosan + ESC, chitosan, and ESC group more than the PBS control. Of the three groups, the chitosan + ESC performed best. Results of this study indicate that temperature-responsive chitosan hydrogel is an injectable scaffold that can be used to deliver stem cells to infarcted myocardium. It can also increase cell retention and graft size. Cardiac function is well preserved, too.


Osteoarthritis and Cartilage | 2010

The support of matrix accumulation and the promotion of sheep articular cartilage defects repair in vivo by chitosan hydrogels

Tong Hao; N. Wen; J.-K. Cao; Haibin Wang; Shuanghong Lü; T. Liu; Qiuxia Lin; Cumi Duan; Changyong Wang

OBJECTIVE Chitosan has been widely used as an injectable scaffold in cartilage tissue engineering due to its characteristic biocompatibility and biodegradability. In this study, chitosan was used in its hydrogel form as a scaffold for chondrocytes that act to reconstruct tissue-engineered cartilage and repair articular cartilage defects in the sheep model. This study aims to find a novel way to apply chitosan in cartilage tissue engineering. METHODS Temperature-responsive chitosan hydrogels were prepared by combining chitosan, beta-sodium glycerophosphate (GP) and hydroxyethyl cellulose (HEC). Tissue-engineered cartilage reconstructions were made in vitro by mixing sheep chondrocytes with a chitosan hydrogel. Cell survival and matrix accumulation were analyzed after 3 weeks in culture. To collect data for in vivo repair, reconstructions cultured for 1 day were transplanted to the freshly prepared defects of the articular cartilage of sheep. Then at both 12 and 24 weeks after transplantation, the grafts were extracted and analyzed histologically and immunohistochemically. RESULTS The results showed that the chondrocytes in the reconstructed cartilage survived and retained their ability to secrete matrix when cultured in vitro. Transplanted in vivo, the reconstructions repaired cartilage defects completely within 24 weeks. The implantation of chitosan hydrogels without chondrocytes also helps to repair cartilage defects. CONCLUSIONS The chitosan-based hydrogel could support matrix accumulation of chondrocytes and could repair sheep cartilage defects in 24 weeks. This study showcased the success of a new technique in its ability to repair articular cartilage defects.


Journal of Cellular and Molecular Medicine | 2013

The tumourigenicity of iPS cells and their differentiated derivates.

Zhiqiang Liu; Yu Tang; Shuanghong Lü; Jin Zhou; Zhiyan Du; Cuimi Duan; Zhiyan Li; Changyong Wang

Induced pluripotent stem cell (iPSC) provides a promising seeding cell for regenerative medicine. However, iPSC has the potential to form teratomas after transplantation. Therefore, it is necessary to evaluate the tumorigenic risks of iPSC and all its differentiated derivates prior to use in a clinical setting. Here, murine iPSCs were transduced with dual reporter gene consisting of monomeric red fluorescent protein (mRFP) and firefly luciferase (Fluc). Undifferentiated iPSCs, iPSC derivates from induced differentiation (iPSC‐derivates), iPSC‐derivated cardiomyocyte (iPSC‐CMs) were subcutaneously injected into the back of nude mice. Non‐invasive bioluminescence imaging (BLI) was longitudinally performed at day 1, 7, 14 and 28 after transplantation to track the survival and proliferation of transplanted cells. At day 28, mice were killed and grafts were explanted to detect teratoma formation. The results demonstrated that transplanted iPSCs, iPSC‐derivates and iPSC‐CMs survived in receipts. Both iPSCs and iPSC‐derivates proliferated dramatically after transplantation, while only slight increase in BLI signals was observed in iPSC‐CM transplanted mice. At day 28, teratomas were detected in both iPSCs and iPSC‐derivates transplanted mice, but not in iPSC‐CM transplanted ones. In vitro study showed the long‐term existence of pluripotent cells during iPSC differentiation. Furthermore, when these cells were passaged in feeder layers as undifferentiated iPSCs, they would recover iPSC‐like colonies, indicating the cause for differentiated iPSCs tumourigenicity. Our study indicates that exclusion of tumorigenic cells by screening in addition to lineage‐specific differentiation is necessary prior to therapeutic use of iPSCs.


Journal of Cellular and Molecular Medicine | 2013

Immunohistochemical characterization and functional identification of mammary gland telocytes in the self-assembly of reconstituted breast cancer tissue in vitro

Yongchao Mou; Yan Wang; Junjie Li; Shuanghong Lü; Cuimi Duan; Zhiyan Du; Guili Yang; Weizhen Chen; Siyang Zhao; Jin Zhou; Changyong Wang

Telocyte (TC) as a special stromal cell exists in mammary gland and might play an important role in the balance of epithelium‐stroma of mammary gland. Considering that different types of breast interstitial cells influence the development and progression of breast cancer, TCs may have its distinct role in this process. We here studied the roles of TCs in the self‐assembly of reconstituted breast cancer tissue. We co‐cultured primary isolated TCs and other breast stromal cells with breast cancer EMT‐6 cells in collagen/Matrigel scaffolds to reconstitute breast cancer tissue in vitro. Using histology methods, we investigated the immunohistochemical characteristics and potential functions of TCs in reconstituted breast cancer tissue. TCs in primary mammary gland stromal cells with long and thin overlapping cytoplasmic processes, expressed c‐kit/CD117, CD34 and vimentin in reconstitute breast cancer tissue. The transmission electron microscopy showed that the telocyte‐like cells closely communicated with breast cancer cells as well as other stromal cells, and might serve as a bridge that directly linked the adjacent cells through membrane‐to‐membrane contact. Compared with cancer tissue sheets of EMT‐6 alone, PCNA proliferation index analysis and TUNEL assay showed that TCs and other breast stromal cells facilitated the formation of typical nest structure, promoted the proliferation of breast cancer cells, and inhibited their apoptosis. In conclusion, we successfully reconstituted breast cancer tissue in vitro, and it seems to be attractive that TCs had potential functions in self‐assembly of EMT‐6/stromal cells reconstituted breast cancer tissue.


Tissue Engineering Part A | 2009

Reconstruction of Engineered Uterine Tissues Containing Smooth Muscle Layer in Collagen/Matrigel Scaffold In Vitro

Shuanghong Lü; Haibin Wang; Hui Liu; Heping Wang; Qiuxia Lin; Dexue Li; Yuxuan Song; Cuimi Duan; Li-Xin Feng; Changyong Wang

OBJECTIVE This study attempted to reconstruct engineered uterine tissues (EUTs) containing smooth muscle layer, akin to the normal uterine wall. METHODS EUTs were reconstructed by seeding epithelial cells on top of the constructed stromal layer over smooth muscle layer. A self-made mold was used to keep the EUTs from contraction. At the same time, it provided static stretch to the EUTs. After 14 days of culture, the structure of the EUTs was analyzed histologically and immunohistochemically, or by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The expression of integrin beta3 subunit, heparin-binding epidermal growth factor (EGF)-like growth factor (HB-EGF), and HOXA-10 was detected by reverse transcription-polymerase chain reaction (RT-PCR). The ability of the EUTs supporting the development of embryos was estimated by coculturing embryos on the EUTs. We also tried a new method to reconstruct EUTs by mixing epithelial cell and stromal cells (1:2) in collagen/Matrigel to form an endometrial layer and putting it on top of the smooth muscle layer. The self-assembling ability of the endometrial epithelial cells and stromal cells in the reconstructed EUTs was analyzed histologically and immunohistochemically. RESULTS The results found that the constructed EUTs with the first and the second method showed three-layered structures. The epithelial layer, stromal layer, and smooth muscle layer were stained by cytokeratin 18, vimentin, and alpha-actin, respectively. TEM showed that the cells in the EUTs reconstructed by the first method were attached to each other by apical tight junctions and rivet-like desmosomes. SEM showed protruded pinopodes, microvilli, and cilium of epithelial cells. The RT-PCR analysis showed that integrin beta3 subunit, HB-EGF, and HOXA-10 were expressed in EUTs. The coculture system of EUTs improved the development rate and quality of murine embryo significantly in comparison with those of control Chatot Ziomek Bavister culture. In the EUTs reconstructed by the second method, the epithelial cells demonstrated self-assembling ability and formed epithelial cell layer on top of the stromal layer and glandular tube-like structures in the stromal layer. Columnar epithelial cells existed in some parts of the epithelial layer. CONCLUSION We engineered EUTs containing smooth muscle layer by two methods. The reconstructed EUTs could support the development of embryos. The epithelial cells showed self-assembling ability in the EUTs.


Cloning and Stem Cells | 2008

Bioreactor Cultivation Enhances NTEB Formation and Differentiation of NTES Cells into Cardiomyocytes

Shuanghong Lü; Sheng Liu; Wenjun He; Cuimi Duan; Yanmin Li; Zhiqiang Liu; Ye Zhang; Tong Hao; Yanmeng Wang; Dexue Li; Changyong Wang; Shaorong Gao

Autogenic embryonic stem cells established from somatic cell nuclear transfer (SCNT) embryos have been proposed as unlimited cell sources for cell transplantation-based treatment of many genetic and degenerative diseases, which can eliminate the immune rejection that occurs after transplantation. In the present study, pluripotent nuclear transfer ES (NTES) cell lines were successfully established from different strains of mice. One NTES cell line, NT1, with capacity of germline transmission, was used to investigate in vitro differentiation into cardiomyocytes. To optimize differentiation conditions for mass production of embryoid bodies (NTEBs) from NTES cells, a slow-turning lateral vessel (STLV) rotating bioreactor was used for culturing the NTES cells to produce NTEBs compared with a conventional static cultivation method. Our results demonstrated that the NTEBs formed in STLV bioreactor were more uniform in size, and no large necrotic centers with most of the cells in NTEBs were viable. Differentiation of the NTEBs formed in both the STLV bioreactor and static culture into cardiomyocytes was induced by ascorbic acid, and the results demonstrated that STLV-produced NTEBs differentiated into cardiomyocytes more efficiently. Taken together, our results suggested that STLV bioreactor provided a more ideal culture condition, which can facilitate the formation of better quality NTEBs and differentiation into cardiomyocytes more efficiently in vitro.


Biomaterials | 2015

Carbon nanotubes enhance intercalated disc assembly in cardiac myocytes via the β1-integrin-mediated signaling pathway

Hongyu Sun; Shuanghong Lü; Xiao-Xia Jiang; Xia Li; Hong Li; Qiuxia Lin; Yongchao Mou; Yuwei Zhao; Yao Han; Jin Zhou; Changyong Wang

Carbon nanotubes (CNTs) offer a new paradigm for constructing functional cardiac patches and repairing myocardial infarction (MI). However, little is known about how CNTs enhance the mechanical integrity and electrophysiological function of cardiac myocytes. To address this issue, we investigated the regularity and precise mechanism of the influence of CNTs on the assembly of intercalated disc (IDs). Here, single walled CNTs incorporated into collagen substrates were utilized as growth supports for neonatal cardiomyocytes, which enhanced cardiomyocyte adhesion and maturation. Furthermore, through the use of immunohistochemical staining, western blotting, transmission electron microscopy, and intracellular calcium transient measurement, we discovered that the addition of CNTs remarkably increased ID-related protein expression and enhanced ID assembly and functionality. On that basis, we further explored the underlying mechanism for how CNTs enhanced ID assembly through the use of immunohistochemical staining and western blotting. We found that the β1-integrin-mediated signaling pathway mediated CNT-induced upregulation of electrical and mechanical junction proteins. Notably, CNTs remarkably accelerated gap junction formation via activation of the β1-integrin-mediated FAK/ERK/GATA4 pathway. These findings provide valuable insight into the mechanistic effects that CNTs have on neonatal cardiomyocyte performance and will have a significant impact on the future of nanomedical research.


Fertility and Sterility | 2010

Reconstruction of endometrium in vitro via rabbit uterine endometrial cells expanded by sex steroid

Haibin Wang; Shuanghong Lü; Qiuxia Lin; Li-Xin Feng; Dexue Li; Cuimi Duan; Ya-li Li; Changyong Wang

OBJECTIVE To culture rabbit endometrial cells by using sex steroids to provide adequate seeding cells for endometrium reconstruction and uterine tissue engineering. DESIGN Prospective experimental study. SETTING Beijing Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences. ANIMAL(S) New Zealand rabbit and Kunming white strain mice. INTERVENTION(S) Rabbits were primed with pregnant mare serum gonadotropin and hCG. Endometrial cells were cultured with E(2) and P(4) of different concentrations. The endometrium was reconstructed by using endometrial cells as seeding cells and collagen-basement membrane matrix as scaffolds. MAIN OUTCOME MEASURE(S) Assay with 93-(4,5-dimethylthiazol-2-yl)2,5-diphenyl tetrazolium bromide, immunofluorescence staining, flow cytometric analysis, hematoxylin and eosin and immunohistochemical staining, and developmental rate of embryos. RESULT(S) The expression patterns of estrogen receptor and P receptor of rabbit endometrium were different before and after treatment with pregnant mare serum gonadotropin-hCG. One hundred nanomolar E(2) with 10 nmol/L P(4) facilitated the proliferation of epithelial cells whereas 100 nmol/L P(4) facilitated that of stromal cells. The epithelial cells could be stable if cultured for seven or eight passages. Cells in the epithelial layer of the reconstructed endometrium were cytokeratin positive. Some showed columnar morphology akin to the luminal epithelium in vivo. Reconstructed endometrium could improve the developmental rate and quality of one-cell mice embryos. CONCLUSION(S) Rabbit endometrial cells could be cultured with a long-standing proliferation capability by sex steroids and applied in uterine tissue engineering. Reconstructed endometrium with proliferated endometrial cells was akin to native endometrium in structure and function.


PLOS ONE | 2013

The Spatiotemporal Development of Intercalated Disk in Three-Dimensional Engineered Heart Tissues Based on Collagen/Matrigel Matrix

Jin Zhou; Yao Shu; Shuanghong Lü; Junjie Li; Hongyu Sun; Rongyu Tang; Cuimi Duan; Yan Wang; Qiuxia Lin; Yongchao Mou; Xia Li; Changyong Wang

Intercalated disk (ID), which electromechanically couples cardiomyocytes into a functional syncitium, is closely related to normal morphology and function of engineered heart tissues (EHTs), but the development mode of ID in the three-dimensional (3D) EHTs is still unclear. In this study, we focused on the spatiotemporal development of the ID in the EHTs constructed by mixing neonatal rat cardiomyocytes with collagen/Matrigel, and investigated the effect of 3D microenvironment provided by collagen/Matrigel matrix on the formation of ID. By histological and immmunofluorescent staining, the spatiotemporal distribution of ID-related junctions was detected. Furthermore, the ultra-structures of the ID in different developmental stages were observed under transmission electron microscope. In addition, the expression of the related proteins was quantitatively analyzed. The results indicate that accompanying the re-organization of cardiomyocytes in collagen/Matrigel matrix, the proteins of adherens junctions, desmosomes and gap junctions redistributed from diffused distribution to intercellular regions to form an integrated ID. The adherens junction and desmosome which are related with mechanical connection appeared earlier than gap junction which is essential for electrochemical coupling. These findings suggest that the 3D microenvironment based on collagen/Matrigel matrix could support the ordered assembly of the ID in EHTs and have implications for comprehending the ordered and coordinated development of ID during the functional organization of EHTs.


Journal of Cellular and Molecular Medicine | 2010

Engineered heart tissue graft derived from somatic cell nuclear transferred embryonic stem cells improve myocardial performance in infarcted rat heart

Shuanghong Lü; Ying Li; Shaorong Gao; Sheng Liu; Haibin Wang; Wenjun He; Jin Zhou; Zhiqiang Liu; Ye Zhang; Qiuxia Lin; Cumi Duan; Xiangzhong Jerry Yang; Changyong Wang

The concept of regenerating diseased myocardium by implanting engineered heart tissue (EHT) is intriguing. Yet it was limited by immune rejection and difficulties to be generated at a size with contractile properties. Somatic cell nuclear transfer is proposed as a practical strategy for generating autologous histocompatible stem (nuclear transferred embryonic stem [NT‐ES]) cells to treat diseases. Nevertheless, it is controversial as NT‐ES cells may pose risks in their therapeutic application. EHT from NT‐ES cell‐derived cardiomyocytes was generated through a series of improved techniques in a self‐made mould to keep the EHTs from contraction and provide static stretch simultaneously. After 7 days of static and mechanical stretching, respectively, the EHTs were implanted to the infarcted rat heart. Four weeks after transplantation, the suitability of EHT in heart muscle repair after myocardial infarction was evaluated by histological examination, echocardiography and multielectrode array measurement. The results showed that large (thickness/diameter, 2–4 mm/10 mm) spontaneously contracting EHTs was generated successfully. The EHTs, which were derived from NT‐ES cells, inte grated and electrically coupled to host myocardium and exerted beneficial effects on the left ventricular function of infarcted rat heart. No teratoma formation was observed in the rat heart implanted with EHTs for 4 weeks. NT‐ES cells can be used as a source of seeding cells for cardiac tissue engineering. Large contractile EHT grafts can be constructed in vitro with the ability to survive after implantation and improve myocardial performance of infarcted rat hearts.

Collaboration


Dive into the Shuanghong Lü's collaboration.

Top Co-Authors

Avatar

Changyong Wang

Academy of Military Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Cuimi Duan

Academy of Military Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Qiuxia Lin

Academy of Military Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Jin Zhou

Academy of Military Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Dexue Li

Academy of Military Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Haibin Wang

Academy of Military Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Tong Hao

Academy of Military Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Zhiqiang Liu

Academy of Military Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Junjie Li

Academy of Military Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Cumi Duan

Academy of Military Medical Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge