Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shuangjun Lin is active.

Publication


Featured researches published by Shuangjun Lin.


Nature Structural & Molecular Biology | 2006

Carbohydrate recognition by Clostridium difficile toxin A

Antonio Greco; Jason Ho; Shuangjun Lin; Monica M. Palcic; Maja Rupnik; Kenneth K.-S. Ng

Clostridium difficile TcdA is a large toxin that binds carbohydrates on intestinal epithelial cells. A 2-Å resolution cocrystal structure reveals two molecules of α-Gal-(1,3)-β-Gal-(1,4)-β-GlcNAcO(CH2)8CO2CH3 binding in an extended conformation to TcdA. Residues forming key contacts with the trisaccharides are conserved in all seven putative binding sites in TcdA, suggesting a mode of multivalent binding that may be exploited for the rational design of novel therapeutics.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Dedicated ent-kaurene and ent-atiserene synthases for platensimycin and platencin biosynthesis

Michael J. Smanski; Zhiguo Yu; Jeffrey Casper; Shuangjun Lin; Ryan M. Peterson; Yihua Chen; Evelyn Wendt-Pienkowski; Scott R. Rajski; Ben Shen

Platensimycin (PTM) and platencin (PTN) are potent and selective inhibitors of bacterial and mammalian fatty acid synthases and have emerged as promising drug leads for both antibacterial and antidiabetic therapies. Comparative analysis of the PTM and PTN biosynthetic machineries in Streptomyces platensis MA7327 and MA7339 revealed that the divergence of PTM and PTN biosynthesis is controlled by dedicated ent-kaurene and ent-atiserene synthases, the latter of which represents a new pathway for diterpenoid biosynthesis. The PTM and PTN biosynthetic machineries provide a rare glimpse at how secondary metabolic pathway evolution increases natural product structural diversity and support the wisdom of applying combinatorial biosynthesis methods for the generation of novel PTM and/or PTN analogues, thereby facilitating drug development efforts based on these privileged natural product scaffolds.


Proceedings of the National Academy of Sciences of the United States of America | 2009

A free-standing condensation enzyme catalyzing ester bond formation in C-1027 biosynthesis

Shuangjun Lin; Steven G. Van Lanen; Ben Shen

Nonribosomal peptide synthetases (NRPSs) catalyze the biosynthesis of many biologically active peptides and typically are modular, with each extension module minimally consisting of a condensation, an adenylation, and a peptidyl carrier protein domain responsible for incorporation of an amino acid into the growing peptide chain. C-1027 is a chromoprotein antitumor antibiotic whose enediyne chromophore consists of an enediyne core, a deoxy aminosugar, a benzoxazolinate, and a β-amino acid moiety. Bioinformatics analysis suggested that the activation and incorporation of the β-amino acid moiety into C-1027 follows an NRPS mechanism whereby biosynthetic intermediates are tethered to the peptidyl carrier protein SgcC2. Here, we report the biochemical characterization of SgcC5, an NRPS condensation enzyme that catalyzes ester bond formation between the SgcC2-tethered (S)-3-chloro-5-hydroxy-β-tyrosine and (R)-1-phenyl-1,2-ethanediol, a mimic of the enediyne core. SgcC5 uses (S)-3-chloro-5-hydroxy-β-tyrosyl-SgcC2 as the donor substrate and exhibits regiospecificity for the C-2 hydroxyl group of the enediyne core mimic as the acceptor substrate. Remarkably, SgcC5 is also capable of catalyzing amide bond formation, albeit with significantly reduced efficiency, between (S)-3-chloro-5-hydroxy-β-tyrosyl-(S)-SgcC2 and (R)-2-amino-1-phenyl-1-ethanol, an alternative enediyne core mimic bearing an amine at its C-2 position. Thus, SgcC5 is capable of catalyzing both ester and amide bond formation, providing an evolutionary link between amide- and ester-forming condensation enzymes.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Biosynthesis of the enediyne antitumor antibiotic C-1027 involves a new branching point in chorismate metabolism

Steven G. Van Lanen; Shuangjun Lin; Ben Shen

C-1027 is an enediyne antitumor antibiotic composed of four distinct moieties: an enediyne core, a deoxy aminosugar, a β-amino acid, and a benzoxazolinate moiety. We now show that the benzoxazolinate moiety is derived from chorismate by the sequential action of two enzymes—SgcD, a 2-amino-2-deoxyisochorismate (ADIC) synthase and SgcG, an iron–sulfur, FMN-dependent ADIC dehydrogenase—to generate 3-enolpyruvoylanthranilate (OPA), a new intermediate in chorismate metabolism. The functional elucidation and catalytic properties of each enzyme are described, including spectroscopic characterization of the products and the development of a fluorescence-based assay for kinetic analysis. SgcD joins isochorismate (IC) synthase and 4-amino-4-deoxychorismate (ADC) synthase as anthranilate synthase component I (ASI) homologues that are devoid of pyruvate lyase activity inherent in ASI; yet, in contrast to IC and ADC synthase, SgcD has retained the ability to aminate chorismate identically to that observed for ASI. The net conversion of chorismate to OPA by the tandem action of SgcD and SgcG unambiguously establishes a new branching point in chorismate metabolism.


Microbial Cell Factories | 2011

Xylitol production from xylose mother liquor: a novel strategy that combines the use of recombinant Bacillus subtilis and Candida maltosa

Hairong Cheng; Ben Wang; Jiyang Lv; Mingguo Jiang; Shuangjun Lin; Zixin Deng

BackgroundXylose mother liquor has high concentrations of xylose (35%-40%) as well as other sugars such as L-arabinose (10%-15%), galactose (8%-10%), glucose (8%-10%), and other minor sugars. Due to the complexity of this mother liquor, further isolation of xylose by simple method is not possible. In China, more than 50,000 metric tons of xylose mother liquor was produced in 2009, and the management of sugars like xylose that present in the low-cost liquor is a problem.ResultsWe designed a novel strategy in which Bacillus subtilis and Candida maltosa were combined and used to convert xylose in this mother liquor to xylitol, a product of higher value. First, the xylose mother liquor was detoxified with the yeast C. maltosa to remove furfural and 5-hydromethylfurfural (HMF), which are inhibitors of B. subtilis growth. The glucose present in the mother liquor was also depleted by this yeast, which was an added advantage because glucose causes carbon catabolite repression in B. subtilis. This detoxification treatment resulted in an inhibitor-free mother liquor, and the C. maltosa cells could be reused as biocatalysts at a later stage to reduce xylose to xylitol. In the second step, a recombinant B. subtilis strain with a disrupted xylose isomerase gene was constructed. The detoxified xylose mother liquor was used as the medium for recombinant B. subtilis cultivation, and this led to L-arabinose depletion and xylose enrichment of the medium. In the third step, the xylose was further reduced to xylitol by C. maltosa cells, and crystallized xylitol was obtained from this yeast transformation medium. C. maltosa transformation of the xylose-enriched medium resulted in xylitol with 4.25 g L-1·h-1 volumetric productivity and 0.85 g xylitol/g xylose specific productivity.ConclusionIn this study, we developed a biological method for the purification of xylose from xylose mother liquor and subsequent preparation of xylitol by C. maltosa-mediated biohydrogenation of xylose.


Journal of Biological Chemistry | 2011

Identification and Characterization of the Pyridomycin Biosynthetic Gene Cluster of Streptomyces pyridomyceticus NRRL B-2517

Tingting Huang; Yemin Wang; Jun Yin; Yanhua Du; Meifeng Tao; Jing Xu; Wenqing Chen; Shuangjun Lin; Zixin Deng

Pyridomycin is a structurally unique antimycobacterial cyclodepsipeptide containing rare 3-(3-pyridyl)-l-alanine and 2-hydroxy-3-methylpent-2-enoic acid moieties. The biosynthetic gene cluster for pyridomycin has been cloned and identified from Streptomyces pyridomyceticus NRRL B-2517. Sequence analysis of a 42.5-kb DNA region revealed 26 putative open reading frames, including two nonribosomal peptide synthetase (NRPS) genes and a polyketide synthase gene. A special feature is the presence of a polyketide synthase-type ketoreductase domain embedded in an NRPS. Furthermore, we showed that PyrA functioned as an NRPS adenylation domain that activates 3-hydroxypicolinic acid and transfers it to a discrete peptidyl carrier protein, PyrU, which functions as a loading module that initiates pyridomycin biosynthesis in vivo and in vitro. PyrA could also activate other aromatic acids, generating three pyridomycin analogues in vivo.Pyridomycin is a structurally unique antimycobacterial cyclodepsipeptide containing rare 3-(3-pyridyl)-l-alanine and 2-hydroxy-3-methylpent-2-enoic acid moieties. The biosynthetic gene cluster for pyridomycin has been cloned and identified from Streptomyces pyridomyceticus NRRL B-2517. Sequence analysis of a 42.5-kb DNA region revealed 26 putative open reading frames, including two nonribosomal peptide synthetase (NRPS) genes and a polyketide synthase gene. A special feature is the presence of a polyketide synthase-type ketoreductase domain embedded in an NRPS. Furthermore, we showed that PyrA functioned as an NRPS adenylation domain that activates 3-hydroxypicolinic acid and transfers it to a discrete peptidyl carrier protein, PyrU, which functions as a loading module that initiates pyridomycin biosynthesis in vivo and in vitro. PyrA could also activate other aromatic acids, generating three pyridomycin analogues in vivo.


Protein & Cell | 2010

Characterization of the tunicamycin gene cluster unveiling unique steps involved in its biosynthesis

Wenqing Chen; Dongjing Qu; Lipeng Zhai; Meifeng Tao; Yemin Wang; Shuangjun Lin; Neil P. J. Price; Zixin Deng

Tunicamycin, a potent reversible translocase I inhibitor, is produced by several Actinomycetes species. The tunicamycin structure is highly unusual, and contains an 11-carbon dialdose sugar and an α, β-1″,11′-glycosidic linkage. Here we report the identification of a gene cluster essential for tunicamycin biosynthesis by high-throughput heterologous expression (HHE) strategy combined with a bioassay. Introduction of the genes into heterologous non-producing Streptomyces hosts results in production of tunicamycin by these strains, demonstrating the role of the genes for the biosynthesis of tunicamycins. Gene disruption experiments coupled with bioinformatic analysis revealed that the tunicamycin gene cluster is minimally composed of 12 genes (tunA-tunL). Amongst these is a putative radical SAM enzyme (Tun B) with a potentially unique role in biosynthetic carbon-carbon bond formation. Hence, a seven-step novel pathway is proposed for tunicamycin biosynthesis. Moreover, two gene clusters for the potential biosynthesis of tunicamycin-like antibiotics were also identified in Streptomyces clavuligerus ATCC 27064 and Actinosynnema mirums DSM 43827. These data provide clarification of the novel mechanisms for tunicamycin biosynthesis, and for the generation of new-designer tunicamycin analogs with selective/enhanced bioactivity via combinatorial biosynthesis strategies.


Journal of the American Chemical Society | 2008

Characterization of the Two-Component, FAD-Dependent Monooxygenase SgcC That Requires Carrier Protein-Tethered Substrates for the Biosynthesis of the Enediyne Antitumor Antibiotic C-1027

Shuangjun Lin; Steven G. Van Lanen; Ben Shen

C-1027 is a potent antitumor antibiotic composed of an apoprotein (CagA) and a reactive enediyne chromophore. The chromophore has four distinct chemical moieties, including an ( S)-3-chloro-5-hydroxy-beta-tyrosine moiety, the biosynthesis of which from l-alpha-tyrosine requires five proteins: SgcC, SgcC1, SgcC2, SgcC3, and SgcC4; a sixth protein, SgcC5, catalyzes the incorporation of this beta-amino acid moiety into C-1027. Biochemical characterization of SgcC has now revealed that (i) SgcC is a two-component, flavin adenine dinucleotide (FAD)-dependent monooxygenase, (ii) SgcC is only active with SgcC2 (peptidyl carrier protein)-tethered substrates, (iii) SgcC-catalyzed hydroxylation requires O 2 and FADH 2, the latter supplied by the C-1027 pathway-specific flavin reductase SgcE6 or Escherichia coli flavin reductase Fre, and (iv) SgcC efficiently catalyzes regioselective hydroxylation of 3-substituted beta-tyrosyl-S-SgcC2 analogues, including the chloro-, bromo-, iodo-, fluoro-, and methyl-substituted analogues, but does not accept 3-hydroxy-beta-tyrosyl-S-SgcC2 as a substrate. Together with the in vitro data for SgcC4, SgcC1, and SgcC3, the results establish that SgcC catalyzes the hydroxylation of ( S)-3-chloro-beta-tyrosyl-S-SgcC2 as the final step in the biosynthesis of the ( S)-3-chloro-5-hydroxy-beta-tyrosine moiety prior to incorporation into C-1027. SgcC now represents the first biochemically characterized two-component, FAD-dependent monooxygenase that acts on a carrier-protein-tethered aromatic substrate.


Applied Microbiology and Biotechnology | 2012

Structural analysis and biosynthetic engineering of a solubility-improved and less-hemolytic nystatin-like polyene in Pseudonocardia autotrophica

Mi Jin Lee; Dekun Kong; Kyuboem Han; David H. Sherman; Linquan Bai; Zixin Deng; Shuangjun Lin; Eung-Soo Kim

Polyene antibiotics such as nystatin are a large family of very valuable antifungal polyketide compounds typically produced by soil actinomycetes. Previously, using a polyene cytochrome P450 hydroxylase-specific genome screening strategy, Pseudonocardia autotrophica KCTC9441 was determined to contain an approximately 125.7-kb region of contiguous DNA with a total of 23 open reading frames, which are involved in the biosynthesis and regulation of a structurally unique polyene natural product named NPP. Here, we report the complete structure of NPP, which contains an aglycone identical to nystatin and harbors a unique di-sugar moiety, mycosaminyl-(α1-4)-N-acetyl-glucosamine. A mutant generated by inactivation of a sole glycosyltransferase gene (nppDI) within the npp gene cluster can be complemented in trans either by nppDI-encoded protein or by its nystatin counterpart, NysDI, suggesting that the two sugars might be attached by two different glycosyltransferases. Compared with nystatin (which bears a single sugar moiety), the di-sugar containing NPP exhibits approximately 300-fold higher water solubility and 10-fold reduced hemolytic activity, while retaining about 50% antifungal activity against Candida albicans. These characteristics reveal NPP as a promising candidate for further development into a pharmacokinetically improved, less-cytotoxic polyene antifungal antibiotic.


Journal of Biological Chemistry | 2006

Substrate Specificity of the Adenylation Enzyme SgcC1 Involved in the Biosynthesis of the Enediyne Antitumor Antibiotic C-1027

Steven G. Van Lanen; Shuangjun Lin; Pieter C. Dorrestein; Neil L. Kelleher; Ben Shen

C-1027 is an enediyne antitumor antibiotic composed of a chromophore with four distinct chemical moieties, including an (S)-3-chloro-4,5-dihydroxy-β-phenylalanine moiety that is derived from l-α-tyrosine. SgcC4, a novel aminomutase requiring no added co-factor that catalyzes the formation of the first intermediate (S)-β-tyrosine and subsequently SgcC1 homologous to adenylation domains of nonribosomal peptide synthetases, was identified as specific for the SgcC4 product and did not recognize any α-amino acids. To definitively establish the substrate for SgcC1, a full kinetic characterization of the enzyme was performed using amino acid-dependent ATP-[32P]PPi exchange assay to monitor amino acid activation and electrospray ionization-Fourier transform mass spectroscopy to follow the loading of the activated β-amino acid substrate to the peptidyl carrier protein SgcC2. The data establish (S)-β-tyrosine as the preferred substrate, although SgcC1 shows promiscuous activity toward aromatic β-amino acids such as β-phenylalanine, 3-chloro-β-tyrosine, and 3-hydroxy-β-tyrosine, but all were <50-fold efficient. A putative active site mutant P571A adjacent to the invariant aspartic acid residue of all α-amino acid-specific adenylation domains known to date was prepared as a preliminary attempt to probe the substrate specificity of SgcC1; however the mutation resulted in a loss of activity with all substrates except (S)-β-tyrosine, which was 142-fold less efficient relative to the wild-type enzyme. In total, SgcC1 is now confirmed to catalyze the second step in the biosynthesis of the (S)-3-chloro-4,5-dihydroxy-β-phenylalanine moiety of C-1027, presenting downstream enzymes with an (S)-β-tyrosyl-S-SgcC2 thioester substrate, and represents the first β-amino acid-specific adenylation enzyme characterized biochemically.

Collaboration


Dive into the Shuangjun Lin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ben Shen

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Dekun Kong

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Tingting Huang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Yi Zou

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Linquan Bai

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Meifeng Tao

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Yemin Wang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nelson L. Brock

Shanghai Jiao Tong University

View shared research outputs
Researchain Logo
Decentralizing Knowledge