Shuangni Yu
Peking Union Medical College Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shuangni Yu.
Cancer Research | 2010
Shuangni Yu; Zhaohui Lu; Changzheng Liu; Yunxiao Meng; Yihui Ma; Wugan Zhao; Jianping Liu; Jia Yu; Jie Chen
Therapeutic applications of microRNA (miRNA) in KRAS-driven pancreatic cancers might be valuable, but few studies have explored this area. Here, we report that miR-96 directly targets the KRAS oncogene and functions as a tumor-suppressing miRNA in pancreatic cancer cells. Ectopic expression of miR-96 through a synthetic miRNA precursor inhibited KRAS, dampened Akt signaling, and triggered apoptosis in cells. In human clinical specimens, miR-96 was downregulated or deleted where an association with KRAS elevations was observed. In vitro and in vivo assays established that miR-96 decreased cancer cell invasion and migration and slowed tumor growth in a manner associated with KRAS downregulation. Our findings identify miR-96 as a potent regulator of KRAS, which may provide a novel therapeutic strategy for treatment of pancreatic cancer and other KRAS-driven cancers.
Carcinogenesis | 2010
Wugan Zhao; Shuangni Yu; Zhaohui Lu; Yihui Ma; Yumei Gu; Jie Chen
Aberrantly expressed microRNA (miRNA) is frequently associated with a variety of cancers, including pancreatic ductal adenocarcinoma (PDAC). In this study, we investigated the expression and possible role of miR-217 in PDAC. Data obtained by locked nucleic acid in situ hybridization and real-time quantitative polymerase chain reaction showed that miR-217 was downregulated in 76.2% (16/21) of PDAC tissues and in all tested PDAC cell lines when compared with the corresponding normal pancreatic tissue. Overexpression of miR-217 in PDAC cells inhibited tumor cell growth and anchorage-independent colony formation and miR-217 decreased tumor cell growth in nude mouse xenografts in vivo. Using in silico predictions, KRAS was defined as a potential direct target of miR-217. Data from the dual-luciferase reporter gene assay showed that KRAS was a direct target of miR-217. Upregulation of miR-217 could decrease KRAS protein levels and reduce the constitutive phosphorylation of downstream AKT. Downregulation of miR-217 expression in PDAC cells could increase cell anchorage-independent colony formation and KRAS protein levels. Furthermore, miR-217 expression was observed to be negatively correlated with KRAS protein expression in PDAC cell lines. We conclude that the frequently downregulated miR-217 can regulate KRAS and function as a tumor suppressor in PDAC. Therefore, miR-217 may serve as a useful therapeutic agent for miRNA-based PDAC therapy.
Journal of Translational Medicine | 2010
Yunxiao Meng; Zhaohui Lu; Shuangni Yu; Qiang Zhang; Yihui Ma; Jie Chen
BackgroundPancreatic cancer has a high mortality rate because it is usually diagnosed when metastasis have already occurred (microscopic and gross disease). Ezrin plays important roles in cell motility, invasion and tumor progression, and it is especially crucial for metastasis. However, its function in pancreatic cancer remains elusive.Methods and ResultsWe found that ezrin overexpression promoted cell protrusion, microvillus formation, anchorage-independent growth, motility and invasion in a pancreatic cancer cell line, MiaPaCa-2, whereas ezrin silencing resulted in the opposite effects. Ezrin overexpression also increased the number of metastatic foci (6/8 vs. 1/8) in a spontaneous metastasis nude mouse model. Furthermore, ezrin overexpression activated Erk1/2 in MiaPaCa-2 cells, which might be partially related to the alteration of cell morphology and invasion. Immunohistochemical analysis showed that ezrin was overexpressed in pancreatic ductal adenocarcinoma (PDAC) (91.4%) and precancerous lesions, i.e. the tubular complexes in chronic pancreatitis (CP) and pancreatic intraepithelial neoplasm (PanIN) (85.7% and 97.1%, respectively), compared to normal pancreatic tissues (0%). Ezrin was also expressed in intercalated ducts adjacent to the adenocarcinoma, which has been considered to be the origin of ducts and acini, as well as the starting point of pancreatic ductal carcinoma development.ConclusionsWe propose that ezrin might play functional roles in modulating morphology, growth, motility and invasion of pancreatic cancer cells, and that the Erk1/2 pathway may be involved in these roles. Moreover, ezrin may participate in the early events of PDAC development and may promote its progression to the advanced stage.
Molecular Cancer Therapeutics | 2013
Yihui Ma; Yumei Gu; Qiang Zhang; Yongqing Han; Shuangni Yu; Zhaohui Lu; Jie Chen
KRAS is an attractive pancreatic ductal adenocarcinoma (PDAC) therapeutic target. E3 ligase is thought to be the component of the ubiquitin conjugation system that is directly responsible for substrate recognition. In this study, an engineered E3 ubiquitin ligase (RC-U) was generated to target the KRAS oncoprotein for ubiquitination and degradation. The engineered E3 ubiquitin ligases (RC-U) were constructed (pRC-U and lentivirus-expressing RC-U). After transfecting the pRC-U plasmid into human pancreatic cancer cells, KRAS expression levels were determined. KRAS expression was also evaluated in cells transfected with pRC-U and treated with MG-132 or cycloheximide. Interactions between RC-U and KRAS as well as whether RC-U could ubiquitinate KRAS were investigated. Extracellular signal–regulated kinase 1/2 (ERK1/2) and phosphorylated ERK 1/2 (pERK1/2) levels were examined in pancreatic cancer cells transfected with pRC-U. The effects of RC-U on pancreatic cancer cell growth were assessed. RC-U decreased KRAS protein levels. After pRC-U transfection, KRAS stability was increased in the presence of MG-132. HEK 293T cells were transfected with a mutant KRAS construct together with pRC-U and incubated with cycloheximide to inhibit new protein synthesis. The exogenous mutant KRAS oncoprotein was degraded more quickly. RC-U can bind KRAS and KRAS can be ubiquitinated by RC-U. pERK1/2 protein levels were decreased. RC-U resulted in reduced cell proliferation in vitro and in vivo. KRAS destruction by RC-U occurred through a ubiquitin-dependent, proteasome-mediated degradation pathway. RC-U inhibited pancreatic cancer cell growth in vitro and in vivo. Mol Cancer Ther; 12(3); 286–94. ©2012 AACR.
World Journal of Gastroenterology | 2011
Yanfeng Xu; Shuangni Yu; Zhao-Hui Lu; Jianping Liu; Jie Chen
AIM To explore the role of actin-bundling protein, fascin during the progression of pancreatic cancer. METHODS The plasmid expressing human fascin-1 was stably transfected into the pancreatic cancer cell line MIA PaCa-2. The proliferation, cell cycle, motility, scattering, invasiveness and organization of the actin filament system in fascin-transfected MIA PaCa-2 cells and control non-transfected cells were determined. RESULTS Heterogeneous overexpression of fascin markedly enhanced the motility, scattering, and invasiveness of MIA PaCa-2 cells. However, overexpression of fascin had minimal effect on MIA PaCa-2 cell proliferation and cell cycle. In addition, cell morphology and organization of the actin filament system were distinctly altered in fascin overexpressed cells. When transplanted into BALB/c-nu mice, fascin-transfected pancreatic cancer cells developed solid tumors at a slightly slower rate, but these tumors displayed more aggressive behavior in comparison with control tumors. CONCLUSION Fascin promotes pancreatic cancer cell migration, invasion and scattering, thus contributes to the aggressive behavior of pancreatic cancer cells.
PLOS ONE | 2015
Xianglan Jin; Yang Sun; Haiyan Yang; Ji Li; Shuangni Yu; Xiaoyan Chang; Zhaohui Lu; Jie Chen
Modulation of KRAS activity by upstream signals has revealed a promising new approach for pancreatic cancer therapy; however, it is not clear whether microRNA-associated KRAS axis is involved in the carcinogenesis of pancreatic cancer. Here, we identified miR-193b as a tumor-suppressive miRNA in pancreatic ductal adenocarcinoma (PDAC). Expression analyses revealed that miR-193b was downregulated in (10/11) PDAC specimens and cell lines. Moreover, we found that miR-193b functioned as a cell-cycle brake in PDAC cells by inducing G1-phase arrest and reducing the fraction of cells in S phase, thereby leading to dampened cell proliferation. miR-193b also modulated the malignant transformation phenotype of PDAC cells by suppressing anchorage-independent growth. Mechanistically, KRAS was verified as a direct effector of miR-193b, through which the AKT and ERK pathways were modulated and cell growth of PDAC cells was suppressed. Taken together, our findings indicate that miR-193b-mediated deregulation of the KRAS axis is involved in pancreatic carcinogenesis, and suggest that miR-193b could be a potentially effective target for PDAC therapy.
International Journal of Medical Sciences | 2017
Xiaoyan Chang; ChunKai Yu; Ji Li; Shuangni Yu; Jie Chen
AIM: To compare the clinicopathological features of pancreatic intraepithelial neoplasias (PanINs) and intraductal papillary mucinous neoplasms (IPMNs), and to investigate the role of hsa-miR-96 and hsa-miR-217 in these two lesions. Methods: Formalin-fixed paraffin-embedded pancreatic specimens were selected in this study, including 58 cases of pancreatic intraepithelial neoplasias (PanINs), 45 cases of pancreatic ductal adenocarcinomas (PDAs), and 57 cases of intraductal papillary mucinous neoplasms (IPMNs). MiRNAs hsa-miR-96 and hsa-miR-217 were detected using locked nucleic acid in situ hybridization (LNA-ISH) with the NBT/BCIP staining system. The differences in miRNA expression among sample sets were analyzed with the Chi-squared test. Results: PanIN-PDAs were inclined to present with higher rate of invasion (p=0.033), lymph node metastasis (p=0.0004) and poorer differentiation (p<0.001). Of the 45 PDAs, only 2 cases were within AJCC Ⅰstage, while there were 11 cases of IPMN associated carcinomas (p=0.0018). In PanIN-1, PanIN-2 and PanIN-3, the expression of hsa-miR-96 was 91.3% (22/23), 78.6%(12/17) and 22.2%(4/18) respectively, while the expression of hsa-miR-217 was 95.7%(22/23) , 70.6% (12/17) and 27.8% (5/18). In IPMN with low-grade, intermediate-grade, high-grade dysplasia, associated carcinoma, the expression of hsa-miR-96 was 67%(9/13), 64%(7/11), 43%(3/7) and 27%(7/26) respectively, while the expression of hsa-miR-217 was 77%(10/13), 64%(7/11), 29%(2/7) and 38%(10/26). The expression of hsa-miR-96 and hsa-miR-217 in PanIN-1 lesions was not significantly different from that in the normal pancreatic ductal epithelium. However, their expression in PanIN-2/3 lesions was significantly different from that in normal pancreatic ductal epithelium (P<0.01). No difference was observed between PanIN derived adenocarcinomas and IPMN-associated carcinomas. Conclusion: IPMN associated carcinomas were in a statistically earlier stage than PanIN- PDAs at the time of operation. Abnormal expression of hsa-miR-96 and of hsa-miR-217 was observed in premalignant lesions (PanINs and IPMNs) of pancreatic carcinoma and down-regulated with increasing grades of PanINs and IPMNs. These microRNAs may serve as potentially early biomarker and act as tumor suppressor genes.
Technology in Cancer Research & Treatment | 2018
Li Zhang; Cuiping Wang; Shuangni Yu; Congwei Jia; Jie Yan; Zhaohui Lu; Jie Chen
Mutations in the AT-rich interactive domain 1A gene, which encodes a subunit of the Switch/Sucrose nonfermentable chromatin remodeling complex, can result in loss of protein expression and are associated with different cancers. Here, we used immunohistochemistry to investigate the significance of AT-rich interactive domain 1A loss in 73 pancreatic ductal adenocarcinoma cases with paired paracancerous normal pancreatic tissues. The relationship between levels of the AT-rich interactive domain 1A protein product, BAF250a, and clinicopathological parameters in the 73 pancreatic cancer specimens was also analyzed. We found that the expression of AT-rich interactive domain 1A in normal pancreatic tissue was higher than that in tumor tissue. Loss of AT-rich interactive domain 1A expression in pancreatic tumors was associated with tumor differentiation (P = .002) and tumor stage (P = .048). Meanwhile, BAF250a protein levels were not related to lymph node metastasis, distant metastasis, sex, or age and were not associated with survival. Transfection of the pancreatic cancer cell lines AsPC-1 and PANC-1 with small-interfering RNA specific for AT-rich interactive domain 1A resulted in elevated messenger RNA and protein expression levels of B-cell lymphoma-2 (Bcl-2), CyclinD1, and Kirsten rat sarcoma viral oncogene (KRAS). The AT-rich interactive domain 1A expression level in the cells was increased following microRNA-31 (miR-31) inhibitor transfection. Our data provide additional evidence that AT-rich interactive domain 1A might function as a tumor suppressor gene in pancreatic carcinogenesis.
Oncotarget | 2017
Yin Cheng; Haiyan Yang; Yang Sun; Hongkai Zhang; Shuangni Yu; Zhaohui Lu; Jie Chen
Runt-related transcription factor 1(RUNX1), a key factor in hematopoiesis that mediates specification and homeostasis of hematopoietic stem and progenitor cells (HSPCs), is also overexpressed in several solid human cancers, and correlated with tumor progression. However, the expression and function of RUNX1 in pancreatic ductal adenocarcinoma were still unclear. Here, we show that RUNX1 is highly expressed in pancreatic adenocarcinoma tissues and knocking down of RUNX1 attenuated aggressiveness in pancreatic cell lines. Moreover, we found that RUNX1 could negatively regulate the expression of miR-93. Bioinformatics method showed that there are two binding sites in the the promotor region of miR-93 precursor and through ChIP-qPCR and firefly luciferase reporter assay, we vertified that these two binding sites each have transcriptive activity in one pancreatic cell lines. This result supported our presumption that RUNX1 regulate miR-93 through binding to the promotor region of miR-93. Besides, the expression and function of miR-93 is quite the opposite, miR-93 overexpression suppresses migration and invasiveness in pancreatic cell lines supporting that RUNX1 negatively regulated miR-93. Our findings provided evidence regarding the role of RUNX1 as an oncogene through the inhibition of miR-93. Targeting RUNX1 can be a potential therapeutic strategy in pancreatic cancer.
Chronic Diseases and Translational Medicine | 2016
Shuangni Yu; Yi-Hui Ma; Wu-Gan Zhao; Xiang-Lan Jin; Hai-Yan Yang; Ping-Ping Liu; Jie Chen
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with a poor overall prognosis. However, curative resection during the early stages of the disease can greatly improve survival rates, highlighting the importance of early screening and detection. Studies of noncoding RNAs, primarily microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), provide important insights into strategies for the early detection of KRAS-driven PDAC. Here, we summarize our studies and review current reports on research investigating KRAS-related miRNAs and lncRNAs, emphasizing their aberrant expression, mechanisms, carcinogenic effects, and prognostic and predictive capacities in PDAC.