Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shubha Gururaja Rao is active.

Publication


Featured researches published by Shubha Gururaja Rao.


Journal of Cell Science | 2009

The conserved metalloprotease invadolysin localizes to the surface of lipid droplets

Neville Cobbe; Kathryn M. Marshall; Shubha Gururaja Rao; Ching-Wen Chang; Francesca Di Cara; Edward Duca; Sharron Vass; Adam Kassan; Margarete M. S. Heck

Invadolysin is a metalloprotease conserved in many different organisms, previously shown to be essential in Drosophila with roles in cell division and cell migration. The gene seems to be ubiquitously expressed and four distinct splice variants have been identified in human cells but not in most other species examined. Immunofluorescent detection of human invadolysin in cultured cells reveals the protein to be associated with the surface of lipid droplets. By means of subcellular fractionation, we have independently confirmed the association of invadolysin with lipid droplets. We thus identify invadolysin as the first metalloprotease located on these dynamic organelles. In addition, analysis of larval fat-body morphological appearance and triglyceride levels in the Drosophila invadolysin mutant suggests that invadolysin plays a role in lipid storage or metabolism.


Mitochondrion | 2016

Molecular identity of cardiac mitochondrial chloride intracellular channel proteins

Devasena Ponnalagu; Shubha Gururaja Rao; Jason Farber; Wenyu Xin; Ahmed Tafsirul Hussain; Kajol Shah; Soichi Tanda; Mark Berryman; John C. Edwards; Harpreet Singh

Emerging evidences demonstrate significance of chloride channels in cardiac function and cardioprotection from ischemia-reperfusion (IR) injury. Unlike mitochondrial potassium channels sensitive to calcium (BKCa) and ATP (KATP), molecular identity of majority of cardiac mitochondrial chloride channels located at the inner membrane is not known. In this study, we report the presence of unique dimorphic chloride intracellular channel (CLIC) proteins namely CLIC1, CLIC4 and CLIC5 as abundant CLICs in the rodent heart. Further, CLIC4, CLIC5, and an ortholog present in Drosophila (DmCLIC) localize to adult cardiac mitochondria. We found that CLIC4 is enriched in the outer mitochondrial membrane, whereas CLIC5 is present in the inner mitochondrial membrane. Also, CLIC5 plays a direct role in regulating mitochondrial reactive oxygen species (ROS) generation. Our study highlights that CLIC5 is localized to the cardiac mitochondria and directly modulates mitochondrial function.


Data in Brief | 2016

Data supporting characterization of CLIC1, CLIC4, CLIC5 and DmCLIC antibodies and localization of CLICs in endoplasmic reticulum of cardiomyocytes

Devasena Ponnalagu; Shubha Gururaja Rao; Jason Farber; Wenyu Xin; Ahmed Tafsirul Hussain; Kajol Shah; Soichi Tanda; Mark Berryman; John C. Edwards; Harpreet Singh

Chloride intracellular channel (CLICs) proteins show 60–70% sequence identity to each other, and exclusively localize to the intracellular organelle membranes and cytosol. In support of our recent publication, “Molecular identity of cardiac mitochondrial chloride intracellular channel proteins” (Ponnalagu et al., 2016) [1], it was important to characterize the specificity of different CLIC paralogs/ortholog (CLIC1, CLIC4, CLIC5 and DmCLIC) antibodies used to decipher their localization in cardiac cells. In addition, localization of CLICs in the other organelles such as endoplasmic reticulum (ER) of cardiomyocytes was established. This article also provides data on the different primers used to show the relative abundance of CLIC paralogs in cardiac tissue and the specificity of the various CLIC antibodies used. We demonstrate that the predominant CLICs in the heart, namely CLIC1, CLIC4 and CLIC5, show differential distribution in endoplasmic reticulum. CLIC1 and CLIC4 both show co-localization to the endoplasmic reticulum whereas CLIC5 does not.


PLOS ONE | 2016

Optimization of Non-Thermal Plasma Treatment in an In Vivo Model Organism

Amanda Lee; Abraham Lin; Kajol Shah; Harpreet Singh; Vandana Miller; Shubha Gururaja Rao

Non-thermal plasma is increasingly being recognized for a wide range of medical and biological applications. However, the effect of non-thermal plasma on physiological functions is not well characterized in in vivo model systems. Here we use a genetically amenable, widely used model system, Drosophila melanogaster, to develop an in vivo system, and investigate the role of non-thermal plasma in blood cell differentiation. Although the blood system in Drosophila is primitive, it is an efficient system with three types of hemocytes, functioning during different developmental stages and environmental stimuli. Blood cell differentiation in Drosophila plays an essential role in tissue modeling during embryogenesis, morphogenesis and also in innate immunity. In this study, we optimized distance and frequency for a direct non-thermal plasma application, and standardized doses to treat larvae and adult flies so that there is no effect on the viability, fertility or locomotion of the organism. We discovered that at optimal distance, time and frequency, application of plasma induced blood cell differentiation in the Drosophila larval lymph gland. We articulate that the augmented differentiation could be due to an increase in the levels of reactive oxygen species (ROS) upon non-thermal plasma application. Our studies open avenues to use Drosophila as a model system in plasma medicine to study various genetic disorders and biological processes where non-thermal plasma has a possible therapeutic application.


Handbook of experimental pharmacology | 2016

Mitochondrial Changes in Cancer

Shubha Gururaja Rao

Mitochondrial structural and functional integrity defines the health of a cell by regulating cellular metabolism. Thus, mitochondria play an important role in both cell proliferation and cell death. Cancer cells are metabolically altered compared to normal cells for their ability to survive better and proliferate faster. Resistance to apoptosis is an important characteristic of cancer cells and given the contribution of mitochondria to apoptosis, it is imperative that mitochondria could behave differently in a tumor situation. The other feature associated with cancer cells is the Warburg effect, which engages a shift in metabolism. Although the Warburg effect often occurs in conjunction with dysfunctional mitochondria, the relationship between mitochondria, the Warburg effect, and cancer cell metabolism is not clearly decoded. Other than these changes, several mitochondrial gene mutations occur in cancer cells, mitochondrial biogenesis is affected and mitochondria see structural and functional variations. In cancer pharmacology, targeting mitochondria and mitochondria associated signaling pathways to reduce tumor proliferation is a growing field of interest. This chapter summarizes various changes in mitochondria in relevance to cancer, behavior of mitochondria during tumorigenesis, and the progress on using mitochondria as a therapeutic target for cancer.Mitochondrial structural and functional integrity defines the health of a cell by regulating cellular metabolism. Thus, mitochondria play an important role in both cell proliferation and cell death. Cancer cells are metabolically altered compared to normal cells for their ability to survive better and proliferate faster. Resistance to apoptosis is an important characteristic of cancer cells and given the contribution of mitochondria to apoptosis, it is imperative that mitochondria could behave differently in a tumor situation. The other feature associated with cancer cells is the Warburg effect, which engages a shift in metabolism. Although the Warburg effect often occurs in conjunction with dysfunctional mitochondria, the relationship between mitochondria, the Warburg effect, and cancer cell metabolism is not clearly decoded. Other than these changes, several mitochondrial gene mutations occur in cancer cells, mitochondrial biogenesis is affected and mitochondria see structural and functional variations. In cancer pharmacology, targeting mitochondria and mitochondria associated signaling pathways to reduce tumor proliferation is a growing field of interest. This chapter summarizes various changes in mitochondria in relevance to cancer, behavior of mitochondria during tumorigenesis, and the progress on using mitochondria as a therapeutic target for cancer.


Nucleic Acids Research | 2015

Invadolysin acts genetically via the SAGA complex to modulate chromosome structure

Shubha Gururaja Rao; Michal M. Janiszewski; Edward Duca; Bryce Nelson; Kanishk Abhinav; Ioanna Panagakou; Sharron Vass; Margarete M. S. Heck

Identification of components essential to chromosome structure and behaviour remains a vibrant area of study. We have previously shown that invadolysin is essential in Drosophila, with roles in cell division and cell migration. Mitotic chromosomes are hypercondensed in length, but display an aberrant fuzzy appearance. We additionally demonstrated that in human cells, invadolysin is localized on the surface of lipid droplets, organelles that store not only triglycerides and sterols but also free histones H2A, H2Av and H2B. Is there a link between the storage of histones in lipid droplets and the aberrantly structured chromosomes of invadolysin mutants? We have identified a genetic interaction between invadolysin and nonstop, the de-ubiquitinating protease component of the SAGA (Spt-Ada-Gcn5-acetyltransferase) chromatin-remodelling complex. invadolysin and nonstop mutants exhibit phenotypic similarities in terms of chromosome structure in both diploid and polyploid cells. Furthermore, IX-141/not1 transheterozygous animals accumulate mono-ubiquitinated histone H2B (ubH2B) and histone H3 tri-methylated at lysine 4 (H3K4me3). Whole mount immunostaining of IX-141/not1 transheterozygous salivary glands revealed that ubH2B accumulates surprisingly in the cytoplasm, rather than the nucleus. Over-expression of the Bre1 ubiquitin ligase phenocopies the effects of mutating either the invadolysin or nonstop genes. Intriguingly, nonstop and mutants of other SAGA subunits (gcn5, ada2b and sgf11) all suppress an invadolysin-induced rough eye phenotype. We conclude that the abnormal chromosome phenotype of invadolysin mutants is likely the result of disrupting the histone modification cycle, as accumulation of ubH2B and H3K4me3 is observed. We further suggest that the mislocalization of ubH2B to the cytoplasm has additional consequences on downstream components essential for chromosome behaviour. We therefore propose that invadolysin plays a crucial role in chromosome organization via its interaction with the SAGA complex.


Current protocols in pharmacology | 2018

Three Decades of Chloride Intracellular Channel Proteins: From Organelle to Organ Physiology

Shubha Gururaja Rao; Devasena Ponnalagu; Neel J. Patel; Harpreet Singh

Intracellular organelles are membranous structures central for maintaining cellular physiology and the overall health of the cell. To maintain cellular function, intracellular organelles are required to tightly regulate their ionic homeostasis. Any imbalance in ionic concentrations can disrupt energy production (mitochondria), protein degradation (lysosomes), DNA replication (nucleus), or cellular signaling (endoplasmic reticulum). Ionic homeostasis is also important for volume regulation of intracellular organelles and is maintained by cation and anion channels as well as transporters. One of the major classes of ion channels predominantly localized to intracellular membranes is chloride intracellular channel proteins (CLICs). They are non‐canonical ion channels with six homologs in mammals, existing as either soluble or integral membrane protein forms, with dual functions as enzymes and channels. Provided in this overview is a brief introduction to CLICs, and a summary of recent information on their localization, biophysical properties, and physiological roles.


Scientific Reports | 2017

Identification and Characterization of a Bacterial Homolog of Chloride Intracellular Channel (CLIC) Protein

Shubha Gururaja Rao; Devasena Ponnalagu; Sowmya Sukur; Harkewal Singh; Shridhar Sanghvi; Yixiao Mei; Ding J. Jin; Harpreet Singh

Chloride intracellular channels (CLIC) are non-classical ion channels lacking a signal sequence for membrane targeting. In eukaryotes, they are implicated in cell volume regulation, acidification, and cell cycle. CLICs resemble the omega class of Glutathione S-transferases (GST), yet differ from them in their ability to form ion channels. They are ubiquitously found in eukaryotes but no prokaryotic homolog has been characterized. We found that indanyloxyacetic acid-94 (IAA-94), a blocker of CLICs, delays the growth of Escherichia coli. In silico analysis showed that the E. coli stringent starvation protein A (SspA) shares sequence and structural homology with CLICs. Similar to CLICs, SspA lacks a signal sequence but contains an omega GST fold. Electrophysiological analysis revealed that SspA auto-inserts into lipid bilayers and forms IAA-94-sensitive ion channels. Substituting the ubiquitously conserved residue leucine 29 to alanine in the pore-forming region increased its single-channel conductance. SspA is essential for cell survival during acid-induced stress, and we found that acidic pH increases the open probability of SspA. Further, IAA-94 delayed the growth of wild-type but not sspA null mutant E. coli. Our results for the first time show that CLIC-like proteins exist in bacteria in the form of SspA, forming functional ion channels.


Scientific Reports | 2018

Drosophila Voltage-Gated Calcium Channel α1-Subunits Regulate Cardiac Function in the Aging Heart

Alexander Lam; Priyanka Karekar; Kajol Shah; Girija Hariharan; Michelle Fleyshman; Harmehak Kaur; Harpreet Singh; Shubha Gururaja Rao

Ion channels maintain numerous physiological functions and regulate signaling pathways. They are the key targets for cellular reactive oxygen species (ROS), acting as signaling switches between ROS and ionic homeostasis. We have carried out a paraquat (PQ) screen in Drosophila to identify ion channels regulating the ROS handling and survival in Drosophila melanogaster. Our screen has revealed that α1-subunits (D-type, T-type, and cacophony) of voltage-gated calcium channels (VGCCs) handle PQ-mediated ROS stress differentially in a gender-based manner. Since ROS are also involved in determining the lifespan, we discovered that the absence of T-type and cacophony decreased the lifespan while the absence of D-type maintained a similar lifespan to that of the wild-type strain. VGCCs are also responsible for electrical signaling in cardiac cells. The cardiac function of each mutant was evaluated through optical coherence tomography (OCT), which revealed that α1-subunits of VGCCs are essential in maintaining cardiac rhythmicity and cardiac function in an age-dependent manner. Our results establish specific roles of α1-subunits of VGCCs in the functioning of the aging heart.


Cell Cycle | 2012

Oncogenic pathway utilizes mitochondrial fusion machinery to support growth.

Shubha Gururaja Rao; Utpal Banerjee

Mitochondria are cellular organelles with dynamic structure and function that respond to and synchronize with cellular signaling pathways. Reduced mitochondrial function results in cell cycle arrest,1,2 and mutations in several genes encoding proteins with mitochondrial function have been described in specific types of cancer3,4 Understanding the role of cellular signaling pathways in controlling mitochondrial function during development and disease is an exciting area of recent research.5

Collaboration


Dive into the Shubha Gururaja Rao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge