Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shubhabrata Mukherjee is active.

Publication


Featured researches published by Shubhabrata Mukherjee.


Brain Imaging and Behavior | 2012

Development and assessment of a composite score for memory in the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

Paul K. Crane; Adam C. Carle; Laura E. Gibbons; Philip S. Insel; R. Scott Mackin; Alden L. Gross; Richard N. Jones; Shubhabrata Mukherjee; S. McKay Curtis; Danielle Harvey; Michael W. Weiner; Dan Mungas

We sought to develop and evaluate a composite memory score from the neuropsychological battery used in the Alzheimer’s Disease (AD) Neuroimaging Initiative (ADNI). We used modern psychometric approaches to analyze longitudinal Rey Auditory Verbal Learning Test (RAVLT, 2 versions), AD Assessment Schedule - Cognition (ADAS-Cog, 3 versions), Mini-Mental State Examination (MMSE), and Logical Memory data to develop ADNI-Mem, a composite memory score. We compared RAVLT and ADAS-Cog versions, and compared ADNI-Mem to RAVLT recall sum scores, four ADAS-Cog-derived scores, the MMSE, and the Clinical Dementia Rating Sum of Boxes. We evaluated rates of decline in normal cognition, mild cognitive impairment (MCI), and AD, ability to predict conversion from MCI to AD, strength of association with selected imaging parameters, and ability to differentiate rates of decline between participants with and without AD cerebrospinal fluid (CSF) signatures. The second version of the RAVLT was harder than the first. The ADAS-Cog versions were of similar difficulty. ADNI-Mem was slightly better at detecting change than total RAVLT recall scores. It was as good as or better than all of the other scores at predicting conversion from MCI to AD. It was associated with all our selected imaging parameters for people with MCI and AD. Participants with MCI with an AD CSF signature had somewhat more rapid decline than did those without. This paper illustrates appropriate methods for addressing the different versions of word lists, and demonstrates the additional power to be gleaned with a psychometrically sound composite memory score.


PLOS ONE | 2013

Alzheimer's disease: analyzing the missing heritability.

Perry G. Ridge; Shubhabrata Mukherjee; Paul K. Crane; John Kauwe

Alzheimer’s disease (AD) is a complex disorder influenced by environmental and genetic factors. Recent work has identified 11 AD markers in 10 loci. We used Genome-wide Complex Trait Analysis to analyze >2 million SNPs for 10,922 individuals from the Alzheimer’s Disease Genetics Consortium to assess the phenotypic variance explained first by known late-onset AD loci, and then by all SNPs in the Alzheimer’s Disease Genetics Consortium dataset. In all, 33% of total phenotypic variance is explained by all common SNPs. APOE alone explained 6% and other known markers 2%, meaning more than 25% of phenotypic variance remains unexplained by known markers, but is tagged by common SNPs included on genotyping arrays or imputed with HapMap genotypes. Novel AD markers that explain large amounts of phenotypic variance are likely to be rare and unidentifiable using genome-wide association studies. Based on our findings and the current direction of human genetics research, we suggest specific study designs for future studies to identify the remaining heritability of Alzheimer’s disease.


Technometrics | 2008

Normal-Based Methods for a Gamma Distribution : Prediction and Tolerance Intervals and Stress-Strength Reliability

Kavassery Mahadevan Krishnamoorthy; Thomas Mathew; Shubhabrata Mukherjee

In this article we propose inferential procedures for a gamma distribution using the Wilson–Hilferty (WH) normal approximation. Specifically, using the result that the cube root of a gamma random variable is approximately normally distributed, we propose normal-based approaches for a gamma distribution for (a) constructing prediction limits, one-sided tolerance limits, and tolerance intervals; (b) for obtaining upper prediction limits for at least l of m observations from a gamma distribution at each of r locations; and (c) assessing the reliability of a stress-strength model involving two independent gamma random variables. For each problem, a normal-based approximate procedure is outlined, and its applicability and validity for a gamma distribution are studied using Monte Carlo simulation. Our investigation shows that the approximate procedures are very satisfactory for all of these problems. For each problem considered, the results are illustrated using practical examples. Our overall conclusion is that the WH normal approximation provides a simple, easy-to-use unified approach for addressing various problems for the gamma distribution.


Brain Imaging and Behavior | 2012

Genome-wide pathway analysis of memory impairment in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort implicates gene candidates, canonical pathways, and networks

Vijay K. Ramanan; Sungeun Kim; Kelly N. Holohan; Li Shen; Kwangsik Nho; Shannon L. Risacher; Tatiana Foroud; Shubhabrata Mukherjee; Paul K. Crane; Paul S. Aisen; Ronald C. Petersen; Michael W. Weiner; Andrew J. Saykin

Memory deficits are prominent features of mild cognitive impairment (MCI) and Alzheimer’s disease (AD). The genetic architecture underlying these memory deficits likely involves the combined effects of multiple genetic variants operative within numerous biological pathways. In order to identify functional pathways associated with memory impairment, we performed a pathway enrichment analysis on genome-wide association data from 742 Alzheimer’s Disease Neuroimaging Initiative (ADNI) participants. A composite measure of memory was generated as the phenotype for this analysis by applying modern psychometric theory to item-level data from the ADNI neuropsychological test battery. Using the GSA-SNP software tool, we identified 27 canonical, expertly-curated pathways with enrichment (FDR-corrected p-value < 0.05) against this composite memory score. Processes classically understood to be involved in memory consolidation, such as neurotransmitter receptor-mediated calcium signaling and long-term potentiation, were highly represented among the enriched pathways. In addition, pathways related to cell adhesion, neuronal differentiation and guided outgrowth, and glucose- and inflammation-related signaling were also enriched. Among genes that were highly-represented in these enriched pathways, we found indications of coordinated relationships, including one large gene set that is subject to regulation by the SP1 transcription factor, and another set that displays co-localized expression in normal brain tissue along with known AD risk genes. These results 1) demonstrate that psychometrically-derived composite memory scores are an effective phenotype for genetic investigations of memory impairment and 2) highlight the promise of pathway analysis in elucidating key mechanistic targets for future studies and for therapeutic interventions.


Alzheimer's Research & Therapy | 2014

Association of MAPT haplotypes with Alzheimer’s disease risk and MAPT brain gene expression levels

Mariet Allen; Michaela Kachadoorian; Zachary Quicksall; Fanggeng Zou; High Seng Chai; Curtis S. Younkin; Julia E. Crook; V. Shane Pankratz; Minerva M. Carrasquillo; Siddharth Krishnan; Thuy Nguyen; Li Ma; Kimberly Malphrus; Sarah Lincoln; Gina Bisceglio; Christopher P. Kolbert; Jin Jen; Shubhabrata Mukherjee; John K. Kauwe; Paul K. Crane; Jonathan L. Haines; Richard Mayeux; Margaret A. Pericak-Vance; Lindsay A. Farrer; Gerard D. Schellenberg; Joseph E. Parisi; Ronald C. Petersen; Neill R. Graff-Radford; Dennis W. Dickson; Steven G. Younkin

IntroductionMAPT encodes for tau, the predominant component of neurofibrillary tangles that are neuropathological hallmarks of Alzheimer’s disease (AD). Genetic association of MAPT variants with late-onset AD (LOAD) risk has been inconsistent, although insufficient power and incomplete assessment of MAPT haplotypes may account for this.MethodsWe examined the association of MAPT haplotypes with LOAD risk in more than 20,000 subjects (n-cases = 9,814, n-controls = 11,550) from Mayo Clinic (n-cases = 2,052, n-controls = 3,406) and the Alzheimer’s Disease Genetics Consortium (ADGC, n-cases = 7,762, n-controls = 8,144). We also assessed associations with brain MAPT gene expression levels measured in the cerebellum (n = 197) and temporal cortex (n = 202) of LOAD subjects. Six single nucleotide polymorphisms (SNPs) which tag MAPT haplotypes with frequencies greater than 1% were evaluated.ResultsH2-haplotype tagging rs8070723-G allele associated with reduced risk of LOAD (odds ratio, OR = 0.90, 95% confidence interval, CI = 0.85-0.95, p = 5.2E-05) with consistent results in the Mayo (OR = 0.81, p = 7.0E-04) and ADGC (OR = 0.89, p = 1.26E-04) cohorts. rs3785883-A allele was also nominally significantly associated with LOAD risk (OR = 1.06, 95% CI = 1.01-1.13, p = 0.034). Haplotype analysis revealed significant global association with LOAD risk in the combined cohort (p = 0.033), with significant association of the H2 haplotype with reduced risk of LOAD as expected (p = 1.53E-04) and suggestive association with additional haplotypes. MAPT SNPs and haplotypes also associated with brain MAPT levels in the cerebellum and temporal cortex of AD subjects with the strongest associations observed for the H2 haplotype and reduced brain MAPT levels (β = -0.16 to -0.20, p = 1.0E-03 to 3.0E-03).ConclusionsThese results confirm the previously reported MAPT H2 associations with LOAD risk in two large series, that this haplotype has the strongest effect on brain MAPT expression amongst those tested and identify additional haplotypes with suggestive associations, which require replication in independent series. These biologically congruent results provide compelling evidence to screen the MAPT region for regulatory variants which confer LOAD risk by influencing its brain gene expression.


Frontiers in Genetics | 2014

Imputation and quality control steps for combining multiple genome-wide datasets

Shefali S. Verma; Mariza de Andrade; Gerard Tromp; Helena Kuivaniemi; Elizabeth W. Pugh; Bahram Namjou-Khales; Shubhabrata Mukherjee; Gail P. Jarvik; Leah C. Kottyan; Amber A. Burt; Yuki Bradford; Gretta D. Armstrong; Kimberly Derr; Dana C. Crawford; Jonathan L. Haines; Rongling Li; David R. Crosslin; Marylyn D. Ritchie

The electronic MEdical Records and GEnomics (eMERGE) network brings together DNA biobanks linked to electronic health records (EHRs) from multiple institutions. Approximately 51,000 DNA samples from distinct individuals have been genotyped using genome-wide SNP arrays across the nine sites of the network. The eMERGE Coordinating Center and the Genomics Workgroup developed a pipeline to impute and merge genomic data across the different SNP arrays to maximize sample size and power to detect associations with a variety of clinical endpoints. The 1000 Genomes cosmopolitan reference panel was used for imputation. Imputation results were evaluated using the following metrics: accuracy of imputation, allelic R2 (estimated correlation between the imputed and true genotypes), and the relationship between allelic R2 and minor allele frequency. Computation time and memory resources required by two different software packages (BEAGLE and IMPUTE2) were also evaluated. A number of challenges were encountered due to the complexity of using two different imputation software packages, multiple ancestral populations, and many different genotyping platforms. We present lessons learned and describe the pipeline implemented here to impute and merge genomic data sets. The eMERGE imputed dataset will serve as a valuable resource for discovery, leveraging the clinical data that can be mined from the EHR.


PLOS Medicine | 2015

Associations between Potentially Modifiable Risk Factors and Alzheimer Disease: A Mendelian Randomization Study

Søren Dinesen Østergaard; Shubhabrata Mukherjee; Stephen J. Sharp; Petroula Proitsi; Luca A. Lotta; Felix R. Day; John Perry; Kevin L. Boehme; Stefan Walter; John Kauwe; Laura E. Gibbons; Eric B. Larson; John Powell; Claudia Langenberg; Paul K. Crane; Nicholas J. Wareham; Robert A. Scott

Background Potentially modifiable risk factors including obesity, diabetes, hypertension, and smoking are associated with Alzheimer disease (AD) and represent promising targets for intervention. However, the causality of these associations is unclear. We sought to assess the causal nature of these associations using Mendelian randomization (MR). Methods and Findings We used SNPs associated with each risk factor as instrumental variables in MR analyses. We considered type 2 diabetes (T2D, N SNPs = 49), fasting glucose (N SNPs = 36), insulin resistance (N SNPs = 10), body mass index (BMI, N SNPs = 32), total cholesterol (N SNPs = 73), HDL-cholesterol (N SNPs = 71), LDL-cholesterol (N SNPs = 57), triglycerides (N SNPs = 39), systolic blood pressure (SBP, N SNPs = 24), smoking initiation (N SNPs = 1), smoking quantity (N SNPs = 3), university completion (N SNPs = 2), and years of education (N SNPs = 1). We calculated MR estimates of associations between each exposure and AD risk using an inverse-variance weighted approach, with summary statistics of SNP–AD associations from the International Genomics of Alzheimer’s Project, comprising a total of 17,008 individuals with AD and 37,154 cognitively normal elderly controls. We found that genetically predicted higher SBP was associated with lower AD risk (odds ratio [OR] per standard deviation [15.4 mm Hg] of SBP [95% CI]: 0.75 [0.62–0.91]; p = 3.4 × 10−3). Genetically predicted higher SBP was also associated with a higher probability of taking antihypertensive medication (p = 6.7 × 10−8). Genetically predicted smoking quantity was associated with lower AD risk (OR per ten cigarettes per day [95% CI]: 0.67 [0.51–0.89]; p = 6.5 × 10−3), although we were unable to stratify by smoking history; genetically predicted smoking initiation was not associated with AD risk (OR = 0.70 [0.37, 1.33]; p = 0.28). We saw no evidence of causal associations between glycemic traits, T2D, BMI, or educational attainment and risk of AD (all p > 0.1). Potential limitations of this study include the small proportion of intermediate trait variance explained by genetic variants and other implicit limitations of MR analyses. Conclusions Inherited lifetime exposure to higher SBP is associated with lower AD risk. These findings suggest that higher blood pressure—or some environmental exposure associated with higher blood pressure, such as use of antihypertensive medications—may reduce AD risk.


Brain Imaging and Behavior | 2012

Voxel and surface-based topography of memory and executive deficits in mild cognitive impairment and Alzheimer’s disease

Kwangsik Nho; Shannon L. Risacher; Paul K. Crane; Charles DeCarli; M. Maria Glymour; Christian G. Habeck; Sungeun Kim; Grace Lee; Elizabeth C. Mormino; Shubhabrata Mukherjee; Li Shen; John D. West; Andrew J. Saykin

Mild cognitive impairment (MCI) and Alzheimer’s disease (AD) are associated with a progressive loss of cognitive abilities. In the present report, we assessed the relationship of memory and executive function with brain structure in a sample of 810 Alzheimer’s Disease Neuroimaging Initiative (ADNI) participants, including 188 AD, 396 MCI, and 226 healthy older adults (HC). Composite scores of memory (ADNI-Mem) and executive function (ADNI-Exec) were generated by applying modern psychometric theory to item-level data from ADNI’s neuropsychological battery. We performed voxel-based morphometry (VBM) and surface-based association (SurfStat) analyses to evaluate relationships of ADNI-Mem and ADNI-Exec with grey matter (GM) density and cortical thickness across the whole brain in the combined sample and within diagnostic groups. We observed strong associations between ADNI-Mem and medial and lateral temporal lobe atrophy. Lower ADNI-Exec scores were associated with advanced GM and cortical atrophy across broadly distributed regions, most impressively in the bilateral parietal and temporal lobes. We also evaluated ADNI-Exec adjusted for ADNI-Mem, and found associations with GM density and cortical thickness primarily in the bilateral parietal, temporal, and frontal lobes. Within-group analyses suggest these associations are strongest in patients with MCI and AD. The present study provides insight into the spatially unbiased associations between brain atrophy and memory and executive function, and underscores the importance of structural brain changes in early cognitive decline.


Frontiers in Genetics | 2014

Genetic-based prediction of disease traits: Prediction is very difficult, especially about the future

Steven J. Schrodi; Shubhabrata Mukherjee; Ying Shan; Gerard Tromp; John J. Sninsky; Amy P. Callear; Tonia C. Carter; Zhan Ye; Jonathan L. Haines; Murray H. Brilliant; Paul K. Crane; Diane T. Smelser; Robert C. Elston; Daniel E. Weeks

Translation of results from genetic findings to inform medical practice is a highly anticipated goal of human genetics. The aim of this paper is to review and discuss the role of genetics in medically-relevant prediction. Germline genetics presages disease onset and therefore can contribute prognostic signals that augment laboratory tests and clinical features. As such, the impact of genetic-based predictive models on clinical decisions and therapy choice could be profound. However, given that (i) medical traits result from a complex interplay between genetic and environmental factors, (ii) the underlying genetic architectures for susceptibility to common diseases are not well-understood, and (iii) replicable susceptibility alleles, in combination, account for only a moderate amount of disease heritability, there are substantial challenges to constructing and implementing genetic risk prediction models with high utility. In spite of these challenges, concerted progress has continued in this area with an ongoing accumulation of studies that identify disease predisposing genotypes. Several statistical approaches with the aim of predicting disease have been published. Here we summarize the current state of disease susceptibility mapping and pharmacogenetics efforts for risk prediction, describe methods used to construct and evaluate genetic-based predictive models, and discuss applications.


Brain Imaging and Behavior | 2012

Relationship between baseline brain metabolism measured using [18F]FDG PET and memory and executive function in prodromal and early Alzheimer’s disease

Christian G. Habeck; Shannon L. Risacher; Grace Lee; M. Maria Glymour; Elizabeth C. Mormino; Shubhabrata Mukherjee; Sungeun Kim; Kwangsik Nho; Charles DeCarli; Andrew J. Saykin; Paul K. Crane

Differences in brain metabolism as measured by FDG-PET in prodromal and early Alzheimer’s disease (AD) have been consistently observed, with a characteristic parietotemporal hypometabolic pattern. However, exploration of brain metabolic correlates of more nuanced measures of cognitive function has been rare, particularly in larger samples. We analyzed the relationship between resting brain metabolism and memory and executive functioning within diagnostic group on a voxel-wise basis in 86 people with AD, 185 people with mild cognitive impairment (MCI), and 86 healthy controls (HC) from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). We found positive associations within AD and MCI but not in HC. For MCI and AD, impaired executive functioning was associated with reduced parietotemporal metabolism, suggesting a pattern consistent with known AD-related hypometabolism. These associations suggest that decreased metabolic activity in the parietal and temporal lobes may underlie the executive function deficits in AD and MCI. For memory, hypometabolism in similar regions of the parietal and temporal lobes were significantly associated with reduced performance in the MCI group. However, for the AD group, memory performance was significantly associated with metabolism in frontal and orbitofrontal areas, suggesting the possibility of compensatory metabolic activity in these areas. Overall, the associations between brain metabolism and cognition in this study suggest the importance of parietal and temporal lobar regions in memory and executive function in the early stages of disease and an increased importance of frontal regions for memory with increasing impairment.

Collaboration


Dive into the Shubhabrata Mukherjee's collaboration.

Top Co-Authors

Avatar

Paul K. Crane

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric B. Larson

Group Health Research Institute

View shared research outputs
Top Co-Authors

Avatar

John Kauwe

Brigham Young University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alden L. Gross

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David A. Bennett

Rush University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge