Shuchen Hsieh
National Sun Yat-sen University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shuchen Hsieh.
Langmuir | 2013
Chiao-Pei Chen; Wan-Rou Luo; Chen-Ni Chen; Shin-Mou Wu; Shuchen Hsieh; Chao-Ming Chiang; Teng-Yuan Dong
We report the electrical transport characteristics of a series of molecular wires, fc-C≡C-C6H4-SAc (fc = ferrocenyl; Ac = acetyl) and AcS-C6H4-C≡C-(fc)n-C≡C-C6H4-SAc (n = 2, 3), consisting of multiple redox-active ferrocenyl centers. The self-assembled monolayers of these molecular wires on Au surfaces were comprehensively characterized by electrochemistry and conductive atomic force microscopy techniques. Characterization of the wires revealed that electron transport is made extremely efficient by the organometallic redox states. There is a strong electronic coupling between ferrocenyl moieties, and superior electron-transport ability exists through these semirigid molecular wires. Standard rate constants for the electron transfer between the electrode and the ferrocenyl moieties were measured for the monolayers by a potential-step chronoamperometry technique. The electron conduction through the molecular wires was estimated using the monolayers as a bridge from the Au(111) metal surface to the gold tip of a conductive atomic force microscope (CAFM). Using the CAFM, Coulomb blockade behavior arising from the capacitive charging of the multinuclear redox-active molecules was observed at room temperature. The conductance switching was mediated by the presence of various ferrocenyl redox states and each current step corresponded to a specific redox state.
The American Journal of Chinese Medicine | 2016
Shu-Ling Hsieh; Shuchen Hsieh; Yu-Hao Kuo; Jyh-Jye Wang; Jinn-Chyi Wang; Chih-Chung Wu
The goal of this study was to investigate the effect of the Panax notoginseng ethanol extract (PNEE) on the regulation of human colorectal cancer (CRC) metastasis. The migratory, invasive, and adhesive abilities and the expression of metastasis-associated regulatory molecules in cultured human CRC cells (HCT-116) treated with the PNEE were analyzed in this study. The migratory and invasive abilities of HCT-116 cells were reduced after PNEE treatment. The incubation of HCT-116 cells with the PNEE for 24 h decreased MMP-9 expression and increased E-cadherin expression compared with the control group. The adhesion reaction assay indicated that treatment with the PNEE led to significantly decreased HCT-116 adhesion to endothelial cells (EA.hy926 cells). The integrin-1 protein levels in HCT-116 cells were significantly decreased following treatment with the PNEE. Similarly, the protein levels of E-selectin and intercellular adhesion molecule-1 (ICAM-1) were significantly decreased by treatment of the EA.hy926 endothelial cells with PNEE. A scanning electron microscope (SEM) examination indicated that HCT-116 cells treated with LPS combined with the PNEE had a less flattened and retracted shape compared with LPS-treated cells, and this change in shape was found to be a phenomenon of extravasation invasion. The transepithelial electrical resistance (TEER) of the EA.hy926 endothelial cell monolayer increased after incubation with the PNEE for 24 h. A cell-cell permeability assay indicated that HCT-116 cells treated with the PNEE displayed significantly reduced levels of phosphorylated VE-cadherin (p-VE-cadherin). These results demonstrate the antimetastatic properties of the PNEE and show that the PNEE affects cells by inhibiting cell migration, invasion, and adhesion and regulating the expression of metastasis-associated signaling molecules.
Nano Research | 2014
Mei-Lang Kung; Pei-Ying Lin; Chiung-Wen Hsieh; Shuchen Hsieh
AbstractNanoparticles have enormous potential for bioimaging and biolabeling applications, in which conventional organically based fluorescent labels degrade and fail to provide long-term tracking. Thus, the development of approaches to make fluorescent probes water soluble and label cells efficient is desirable for most biological applications. Here, we report on the fabrication and characterization of self-assembled nanodots (SANDs) from 3-aminopropyltriethoxysilane (APTES) as a probe for protein labeling. We show that fluorescent SAND probes exhibit both bright photoluminescence and biocompatibility in an aqueous environment. Selective in vitro imaging using protein and carbohydrate labeling of hepatoma cell lines are demonstrated using biocompatible SANDs conjugated with avidin and galactose, respectively. Cytotoxicity tests show that conjugated SAND particles have negligible effects on cell proliferation. Unlike other synthetic systems that require multistep treatments to achieve robust surface functionalization and to develop flexible bioconjugation strategies, our results demonstrate the versatility of this one-step SAND fabrication method for creating multicolor fluorescent probes with the tailored functionalities, efficient emission, as well as excellent biocompatibility, required for broad biological use.
ChemPhysChem | 2014
Pei-Ying Lin; Chiung-Wen Hsieh; Pei‐Chuan Tsai; Shuchen Hsieh
We report on the fabrication of a surface-enhanced Raman scattering (SERS) platform, comprised of a three-dimensional (3D) porous eggshell membrane (ESM) scaffold decorated with Ag nanoparticles (NPs). Both native and treated ESM were used, where the treated ESM pore size and fiber crossing density was controlled by timed exposure to hydrogen peroxide (H2O2). Ag NPs were synthesized in situ by reduction of silver nitrate with ascorbic acid. Our results demonstrate that H2O2-treated Ag-ESM provides a more densely packed 3D network of active material, which leads to consistently higher SERS enhancement than untreated Ag-ESM substrates.
Journal of Colloid and Interface Science | 2010
Shuchen Hsieh; Wei-Jay Chao; Chiung-Wen Hsieh
Gramicidin molecules were deposited on HOPG surfaces to characterize molecular orientation and film structure as a function of surface coverage and temperature. At low coverage (0.35 ML), the molecules adopted a flat-lying orientation and formed dendritic islands. At higher coverage (0.86 ML), molecules adopted an upright orientation and circular holes formed in the films. The upright film exhibited higher adhesion in force spectroscopy measurements, supporting our molecular orientation assignments. At elevated deposition temperatures (50 °C) on the higher coverage films, the holes were still present, but partially filled in. At 60 °C the film structure was quite different, forming tall irregular islands without the circular holes observed at lower temperatures. These results demonstrate that gramicidin molecular orientation and film structure on HOPG can be controlled by tuning the surface coverage and deposition temperature.
Scientific Reports | 2017
Pei-Ying Lin; Chiung-Wen Hsieh; Shuchen Hsieh
We have prepared and tested a new surface enhanced Raman scattering (SERS) substrate based on self-assembled graphitic sheets to detect bisphenol A (BPA) in plastic consumer goods. Transmission electron microscopy (TEM) and atomic-force microscopy (AFM) were used to characterize the structure of the graphitic sheets and showed a lattice spacing of 0.24 nm and layer height of 0.34 nm. These values were comparable to single monolayer graphene. The effective SERS detection limit of this method is 1 μM BPA, which is lower than the European Union specific migration limit for BPA of 0.6 mg/kg (2.6 μM). When used in salt solutions, graphitic sheets exhibited ultra-sensitivity toward BPA of 0.025 M to 2 M, which was broader than physiological ionic strength (0.14 M) and urinary NaCl (0.17 M). Our results demonstrated that this graphitic sheet based SERS detection platform can be used to determine BPA levels leached from commercial polycarbonate plastic products and for on-site rapid analysis with good results.
Journal of Colloid and Interface Science | 2010
Teng-Yuan Dong; Chen-Ni Chen; Ching-Wen Wang; Wei-Ting Chen; Chiao-Pei Chen; Shu-Fan Lin; Shuchen Hsieh; Chiung-Wen Hsieh; Jenn-Ming Song; In-Gann Chen; Hsien-Tse Tung; Tzu-Hsuan Kao
We demonstrate a simple method to synthesize silver wires by thermal reduction of aqueous AgNO(3) droplet with catalytic anatase TiO(2) nanoparticles which were spin-coated on Si wafer. Structural characterization of the silver wires shows that the nanowires grow primarily along the [011] direction. SEM image of the silver wires clearly shows the catalytic TiO(2) nano-cluster attached to the end of the each silver wire. Since the process was surfactant-free, the silver nanowires prepared by our method retain the excellent electrical conductivity. The intrinsic resistivity calculated from the current-voltage curve for a wire with 12880.41 nm(2) cross-section area was 18.72 microohm cm, which is about 11.6 times higher than that of bulk silver (1.61 microohm cm). Our simple method can be also applied to generate CuO with ring-shaped microstructure by using ITO conducting glass as matrix. We have found that the size and reproducibility are well-controllable. A single phase of CuO ring-shaped microstructure with outer diameters ranging from approximately 13 to 17 microm and inner diameters ranging from approximately 1.4 to 3.3 microm was obtained. The composition of CuO microring was confirmed by thin-film XRD and XPS analyses.
Nanoscale | 2015
Mei-Lang Kung; Shu-Ling Hsieh; Chih-Chung Wu; Tian-Huei Chu; Yu-Chun Lin; Bi-Wen Yeh; Shuchen Hsieh
Journal of Nanoscience and Nanotechnology | 2009
Shuchen Hsieh; Wei-Jay Chao; Chiung-Wen Hsieh
Scientific Reports | 2013
Pei-Ying Lin; Chiung-Wen Hsieh; Mei-Lang Kung; Shuchen Hsieh