Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shue Liu is active.

Publication


Featured researches published by Shue Liu.


Molecular Pain | 2015

Current Gene Therapy using Viral Vectors for Chronic Pain

Jean Marc G Guedon; Shaogen Wu; Xuexing Zheng; Caroline C. Churchill; Joseph C. Glorioso; Ching Hang Liu; Shue Liu; Lucy Vulchanova; Alex Bekker; Yuan Xiang Tao; Paul R. Kinchington; William F. Goins; Carolyn A. Fairbanks; Shuanglin Hao

The complexity of chronic pain and the challenges of pharmacotherapy highlight the importance of development of new approaches to pain management. Gene therapy approaches may be complementary to pharmacotherapy for several advantages. Gene therapy strategies may target specific chronic pain mechanisms in a tissue-specific manner. The present collection of articles features distinct gene therapy approaches targeting specific mechanisms identified as important in the specific pain conditions. Dr. Fairbanks group describes commonly used gene therapeutics (herpes simplex viral vector (HSV) and adeno-associated viral vector (AAV)), and addresses biodistribution and potential neurotoxicity in pre-clinical models of vector delivery. Dr. Tao group addresses that downregulation of a voltage-gated potassium channel (Kv1.2) contributes to the maintenance of neuropathic pain. Alleviation of chronic pain through restoring Kv1.2 expression in sensory neurons is presented in this review. Drs Goins and Kinchington group describes a strategy to use the replication defective HSV vector to deliver two different gene products (enkephalin and TNF soluble receptor) for the treatment of post-herpetic neuralgia. Dr. Hao group addresses the observation that the pro-inflammatory cytokines are an important shared mechanism underlying both neuropathic pain and the development of opioid analgesic tolerance and withdrawal. The use of gene therapy strategies to enhance expression of the anti-pro-inflammatory cytokines is summarized. Development of multiple gene therapy strategies may have the benefit of targeting specific pathologies associated with distinct chronic pain conditions (by Guest Editors, Drs. C. Fairbanks and S. Hao).


Biochemical and Biophysical Research Communications | 2012

TNFα and IL-1β are mediated by both TLR4 and Nod1 pathways in the cultured HAPI cells stimulated by LPS

Wenwen Zheng; Xuexing Zheng; Shue Liu; Hongsheng Ouyang; Roy C. Levitt; Keith A. Candiotti; Shuanglin Hao

A growing body of evidence recently suggests that glial cell activation plays an important role in several neurodegenerative diseases and neuropathic pain. Microglia in the central nervous system express toll-like receptor 4 (TLR4) that is traditionally accepted as the primary receptor of lipopolysaccharide (LPS). LPS activates TLR4 signaling pathways to induce the production of proinflammatory molecules. In the present studies, we verified the LPS signaling pathways using cultured highly aggressively proliferating immortalized (HAPI) microglial cells. We found that HAPI cells treated with LPS upregulated the expression of TLR4, phospho-JNK (pJNK) and phospho-NF-κB (pNF-κB), TNFα and IL-1β. Silencing TLR4 with siRNA reduced the expression of pJNK, TNFα and IL-1β, but not pNF-κB in the cells. Inhibition of JNK with SP600125 (a JNK inhibitor) decreased the expression of TNFα and IL-1β. Unexpectedly, we found that inhibition of Nod1 with ML130 significantly reduced the expression of pNF-κB. Inhibition of NF-κB also reduced the expression of TNFα and IL-1β. Nod1 ligand, DAP induced the upregulation of pNF-κB which was blocked by Nod1 inhibitor. These data indicate that LPS-induced pJNK is TLR4-dependent, and that pNF-κB is Nod1-dependent in HAPI cells treated with LPS. Either TLR4-JNK or Nod1-NF-κB pathways is involved in the expression of TNFα and IL-1β.


Gene Therapy | 2014

HSV-mediated p55TNFSR reduces neuropathic pain induced by HIV gp120 in rats through CXCR4 activity

W. Huang; W. Zheng; Shue Liu; Weian Zeng; Roy C. Levitt; Keith A. Candiotti; David A. Lubarsky; S. Hao

Human immunodeficiency virus (HIV)-related neuropathic pain is a debilitating chronic condition that is severe and unrelenting. Despite extensive research, the detailed neuropathological mechanisms remain unknown, which hinders our ability to develop effective treatments. In this study, we investigated the role of proinflammatory molecules, tumor necrosis factor-α (TNFα), CXCR4 and stromal-derived factor-1 α (SDF1α), in the L4/5 dorsal root ganglia (DRG) and the spinal dorsal horn in HIV gp120 protein-mediated neuropathic pain. Our results showed that the application of HIV gp120 to the sciatic nerve induced upregulation of TNFα, CXCR4 and SDF1α in both the DRG and the lumbar spinal dorsal horn. Non-replicating herpes simplex virus (HSV) vector encoding the p55TNFSR gene and producing a TNF-soluble receptor (TNFSR) to block bioactivity of TNFα reversed mechanical allodynia. Intrathecal AMD3100 (CXCR4 antagonist) increased mechanical threshold. The HSV vectors expressing p55TNFSR reversed upregulation of TNFα, CXCR4 and SDF1α induced by gp120 in the DRG and the spinal dorsal horn. These studies suggest that proinflammatory TNFα to the CXCR4/SDF1 pathway has an important role in the HIV-related neuropathic pain state and that blocking the proinflammatory cytokines or chemokines is able to reduce neuropathic pain. This work provides a novel gene therapy proof-of-concept for HIV-associated neuropathic pain.


Anesthesia & Analgesia | 2014

Interleukin 10 mediated by herpes simplex virus vectors suppresses neuropathic pain induced by human immunodeficiency virus gp120 in rats.

Wenwen Zheng; Wan Huang; Shue Liu; Roy C. Levitt; Keith A. Candiotti; David A. Lubarsky; Shuanglin Hao

BACKGROUND:Human immunodeficiency virus (HIV)–associated sensory neuropathy is a common neurological complication of HIV infection affecting up to 30% of HIV-positive individuals. However, the exact neuropathological mechanisms remain unknown, which hinders our ability to develop effective treatments for HIV-related neuropathic pain (NP). In this study, we tested the hypothesis that inhibition of proinflammatory factors with overexpression of interleukin (IL)-10 reduces HIV-related NP in a rat model. METHODS:NP was induced by the application of recombinant HIV-1 envelope protein gp120 into the sciatic nerve. The hindpaws of rats were inoculated with nonreplicating herpes simplex virus (HSV) vectors expressing anti-inflammatory cytokine IL-10 or control vector. Mechanical threshold was tested using von Frey filaments before and after treatments with the vectors. The mechanical threshold response was assessed over time using the area under curves. The expression of phosphorylated p38 mitogen-activated kinase, tumor necrosis factor-&agr;, stromal cell–derived factor-1&agr;, and C-X-C chemokine receptor type 4 in both the lumbar spinal cord and the L4/5 dorsal root ganglia (DRG), was examined at 14 and 28 days after vector inoculation using Western blots. RESULTS:We found that in the gp120-induced NP model, IL-10 overexpression mediated by the HSV vector resulted in a significant elevation of the mechanical threshold that was apparent on day 3 after vector inoculation compared with the control vector (P < 0.001). The antiallodynic effect of the single HSV vector inoculation expressing IL-10 lasted >28 days. The area under curve in the HSV vector expressing IL-10 was increased compared with that in the control vector (P < 0.0001). HSV vectors expressing IL-10 reversed the upregulation of phosphorylated p38 mitogen-activated kinase, tumor necrosis factor-&agr;, stromal cell–derived factor-1&agr;, and C-X-C chemokine receptor type 4 expression at 14 and/or 28 days in the DRG and/or the spinal dorsal horn. CONCLUSIONS:Our studies demonstrate that blocking the signaling of these proinflammatory molecules in the DRG and/or the spinal cord using the HSV vector expressing IL-10 is able to reduce HIV-related NP. These results provide new insights on the potential mechanisms of HIV-associated NP and a proof of concept for treating painful HIV sensory neuropathy with this type of gene therapy.


Anesthesia & Analgesia | 2015

Gene Transfer of Glutamic Acid Decarboxylase 67 by Herpes Simplex Virus Vectors Suppresses Neuropathic Pain Induced by Human Immunodeficiency Virus gp120 Combined with ddC in Rats.

Megumi Kanao; Hirotsugu Kanda; Wan Huang; Shue Liu; Hyun Yi; Keith A. Candiotti; David A. Lubarsky; Roy C. Levitt; Shuanglin Hao

BACKGROUND:Human immunodeficiency virus (HIV)-related painful sensory neuropathies primarily consist of the HIV infection–related distal sensory polyneuropathy and antiretroviral toxic neuropathies. Pharmacotherapy provides only partial relief of pain in patients with HIV/acquired immune deficiency syndrome because little is known about the exact neuropathological mechanisms for HIV-associated neuropathic pain (NP). Hypofunction of &ggr;-aminobutyric acid (GABA) GABAergic inhibitory mechanisms has been reported after peripheral nerve injury. In this study, we tested the hypothesis that HIV gp120 combined with antiretroviral therapy reduces spinal GABAergic inhibitory tone and that restoration of GABAergic inhibitory tone will reduce HIV-related NP in a rat model. METHODS:The application of recombinant HIV-1 envelope protein gp120 into the sciatic nerve plus systemic ddC (one antiretroviral drug) induced mechanical allodynia. The hind paws of rats were inoculated with replication-defective herpes simplex virus (HSV) vectors genetically encoding gad1 gene to express glutamic acid decarboxylase 67 (GAD67), an enzyme that catalyzes the decarboxylation of glutamate to GABA. Mechanical threshold was tested using von Frey filaments before and after treatments with the vectors. The expression of GAD67 in both the lumbar spinal cord and the L4-5 dorsal root ganglia was examined using western blots. The expression of mitochondrial superoxide in the spinal dorsal horn was examined using MitoSox imaging. The immunoreactivity of spinal GABA, pCREB, and pC/EBP&bgr; was tested using immunohistochemistry. RESULTS:In the gp120 with ddC-induced neuropathic pain model, GAD67 expression mediated by the HSV vector caused an elevation of mechanical threshold that was apparent on day 3 after vector inoculation. The antiallodynic effect of the single HSV vector inoculation expressing GAD67 lasted >28 days. The area under the time–effect curves in the HSV vector expressing GAD67 was increased compared with that in the control vectors (P = 0.0005). Intrathecal GABA-A/B agonists elevated mechanical threshold in the pain model. The HSV vectors expressing GAD67 reversed the lowered GABA immunoreactivity in the spinal dorsal horn in the neuropathic rats. HSV vectors expressing GAD67 in the neuropathic rats reversed the increased signals of mitochondrial superoxide in the spinal dorsal horn. The vectors expressing GAD67 reversed the upregulated immunoreactivity expression of pCREB and pC/EBP&bgr; in the spinal dorsal horn in rats exhibiting NP. CONCLUSIONS:Based on our results, we suggest that GAD67 mediated by HSV vectors acting through the suppression of mitochondrial reactive oxygen species and transcriptional factors in the spinal cord decreases pain in the HIV-related neuropathic pain model, providing preclinical evidence for gene therapy applications in patients with HIV-related pain states.


Experimental Neurology | 2016

Spinal CPEB-mtROS-CBP signaling pathway contributes to perineural HIV gp120 with ddC-related neuropathic pain in rats.

Takafumi Iida; Hyun Yi; Shue Liu; Wan Huang; Hirotsugu Kanda; David A. Lubarsky; Shuanglin Hao

Human immunodeficiency virus (HIV) patients treated with nucleoside reverse transcriptase inhibitors (NRTIs), have been known to develop neuropathic pain. While there has been a major shift away from some neurotoxic NRTIs in current antiretroviral therapy, a large number of HIV patients alive today have previously received them, and many have developed painful peripheral neuropathy. The exact mechanisms by which HIV with NRTIs contribute to the development of neuropathic pain are not known. Previous studies suggest that cytoplasmic polyadenylation element-binding protein (CPEB), reactive oxygen species (ROS), and cAMP-response element-binding protein (CREB)-binding protein (CBP), are involved in the neuroimmunological diseases including inflammatory/neuropathic pain. In this study, we investigated the role of CPEB, mitochondrial ROS (mtROS), or CBP in neuropathic pain induced by HIV envelope protein gp120 combined with antiretroviral drug. The application of recombinant gp120 into the sciatic nerve plus systemic ddC (one of NRTIs) induced mechanical allodynia. Knockdown of CPEB or CBP using intrathecal antisense oligodeoxynucleotide (AS-ODN) reduced mechanical allodynia. Intrathecal mitochondrial superoxide scavenger mito-tempol (Mito-T) increased mechanical withdrawal threshold. Knockdown of CPEB using intrathecal AS-ODN, reduced the up-regulated mitochondrial superoxide in the spinal dorsal horn in rats with gp120 combined with ddC. Intrathecal Mito-T lowered the increased expression of CBP in the spinal dorsal horn. Immunostaining studies showed that neuronal CPEB positive cells were co-localized with MitoSox positive profiles, and that MitoSox positive profiles were co-localized with neuronal CBP. Our studies suggest that neuronal CPEB-mtROS-CBP pathway in the spinal dorsal horn, plays an important role in the gp120/ddC-induced neuropathic pain in rats.


Anesthesia & Analgesia | 2016

Inhibition of Mitochondrial Fission Protein Reduced Mechanical Allodynia and Suppressed Spinal Mitochondrial Superoxide Induced by Perineural Human Immunodeficiency Virus gp120 in Rats.

Hirotsugu Kanda; Shue Liu; Takafumi Iida; Hyun Yi; Wan Huang; Roy C. Levitt; David A. Lubarsky; Keith A. Candiotti; Shuanglin Hao

BACKGROUND:Mitochondria play an important role in many cellular and physiologic functions. Mitochondria are dynamic organelles, and their fusion and fission regulate cellular signaling, development, and mitochondrial homeostasis. The most common complaint of human immunodeficiency virus (HIV)-sensory neuropathy is pain on the soles in patients with HIV, but the exact molecular mechanisms of HIV neuropathic pain are not clear. In the present study, we investigated the role of mitochondrial dynamin-related protein 1 (Drp1, a GTPase that mediates mitochondrial fission) in the perineural HIV coat glycoprotein gp120-induced neuropathic pain state. METHODS:Neuropathic pain was induced by the application of recombinant HIV-1 envelope protein gp120 into the sciatic nerve. Mechanical threshold was tested using von Frey filaments. The mechanical threshold response was assessed over time using the area under curves. Intrathecal administration of antisense oligodeoxynucleotide (ODN) against Drp1, mitochondrial division inhibitor-1 (mdivi-1), or phenyl-N-tert-butylnitrone (a reactive oxygen species scavenger) was given. The expression of spinal Drp1 was examined using western blots. The expression of mitochondrial superoxide in the spinal dorsal horn was examined using MitoSox imaging. RESULTS:Intrathecal administration of either antisense ODN against Drp1 or mdivi-1 decreased mechanical allodynia (a sensation of pain evoked by nonpainful stimuli) in the gp120 model. Intrathecal ODN or mdivi-1 did not change basic mechanical threshold in sham surgery rats. Intrathecal Drp1 antisense ODN decreased the spinal expression of increased Drp1 protein induced by peripheral gp120 application. Intrathecal phenyl-N-tert-butylnitrone reduced mechanical allodynia. Furthermore, both intrathecal Drp1 antisense ODN and mdivi-1 reversed the upregulation of mitochondrial superoxide in the spinal dorsal horn in the gp120 neuropathic pain state. CONCLUSIONS:These data suggest that mitochondrial division plays a substantial role in the HIV gp120-related neuropathic pain state through mitochondrial reactive oxygen species and provides evidence for a novel approach to treating chronic pain in patients with HIV.


Gene Therapy | 2016

HSV vector-mediated GAD67 suppresses neuropathic pain induced by perineural HIV gp120 in rats through inhibition of ROS and Wnt5a

Hirotsugu Kanda; Megumi Kanao; Shue Liu; Hyun Yi; Takafumi Iida; Roy C. Levitt; Keith A. Candiotti; David A. Lubarsky; Shuanglin Hao

Human immunodeficiency virus (HIV)-related neuropathic pain is a debilitating chronic condition that is severe and unrelenting. Despite the extensive research, the exact neuropathological mechanisms remain unknown, which hinders our ability to develop effective treatments. Loss of GABAergic tone may have an important role in the neuropathic pain state. Glutamic acid decarboxylase 67 (GAD67) is one of the isoforms that catalyze GABA synthesis. Here, we used recombinant herpes simplex virus (HSV-1) vectors that encode gad1 gene to evaluate the therapeutic potential of GAD67 in peripheral HIV gp120-induced neuropathic pain in rats. We found that (1) subcutaneous inoculation of the HSV vectors expressing GAD67 attenuated mechanical allodynia in the model of HIV gp120-induced neuropathic pain, (2) the anti-allodynic effect of GAD67 was reduced by GABA-A and-B receptors antagonists, (3) HSV vectors expressing GAD67 reversed the lowered GABA-IR expression and (4) the HSV vectors expressing GAD67 suppressed the upregulated mitochondrial superoxide and Wnt5a in the spinal dorsal horn. Taken together, our studies support the concept that recovering GABAergic tone by the HSV vectors may reverse HIV-associated neuropathic pain through suppressing mitochondrial superoxide and Wnt5a. Our studies provide validation of HSV-mediated GAD67 gene therapy in the treatment of HIV-related neuropathic pain.


Cellular and Molecular Neurobiology | 2012

Crosstalk between JNK and NF-κB in the KDO2-mediated production of TNFα in HAPI cells.

Xuexing Zheng; Wenwen Zheng; Shue Liu; Harshil M. Patel; Xianzhu Xia; Hongsheng Ouyang; Roy C. Levitt; Keith A. Candiotti; Shuanglin Hao

Both nuclear factor kappa B (NF-κB) and mitogen-activated protein kinases mediate production of proinflammatory cytokines in many types of cells. c-Jun N-terminal kinases (JNK) is a key regulator of many cellular events including cell inflammation and/or programmed cell death (apoptosis). In addition to mediating immune and inflammatory responses, NF-κB transcription factors control cell survival. It is reported that activation of NF-κB antagonizes apoptosis or programmed cell death by numerous triggers. It has been reported that NF-κB activation results in rapid inactivation of JNK in tumor necrosis factor alpha (TNFα)-treated murine embryonic fibroblasts. It is not clear about the relationship of JNK and NF-κB in the microglial cells induced by TLR4 activity. In the present study, we investigated the relationship of JNK and NF-κB in the highly aggressively proliferating immortalized microglial cell line treated with KDO2 (a TLR4 agonist). KDO2 treatment significantly induced the phosphorylation of JNK and NF-κB, and released TNFα. Knockdown of TLR4 with TLR4 siRNA significantly reduced phosphorylation of JNK (pJNK), phosphorylation of NF-κB, and release of TNFα. Inhibition of JNK reduced the release of TNFα, but not phosphorylation of NF-κB. Unexpectedly, inhibition of NF-κB enhanced pJNK and the release of TNFα. These results showed that TNFα induced by KDO2 was JNK-dependent, and that NF-κB negatively modulated both pJNK and TNFα in the cultured microglial cell line. The current study may provide a new insight in the modulation of TNFα in the microglial cell line.


Gene Therapy | 2017

MnSOD mediated by HSV vectors in the periaqueductal gray suppresses morphine withdrawal in rats

Takafumi Iida; Hyun Yi; Shue Liu; D Ikegami; W. Zheng; Q Liu; Keiya Takahashi; Yuta Kashiwagi; William F. Goins; Joseph C. Glorioso; Shuanglin Hao

Morphine appears to be the most active metabolite of heroin; therefore, the effects of morphine are important in understanding the ramifications of heroin abuse. Opioid physical dependence (withdrawal response) may have very long-lasting effects on the motivation for reward, including the incubation of cue-induced drug-seeking behavior. However, the exact mechanisms of morphine withdrawal (MW) are not clear yet, and its treatment remains elusive. Periaqueductal gray (PAG) is one of the important sites in the pathogenesis of MW. Here, we used recombinant herpes simplex virus (HSV) vectors that encode the sod2 gene expressing manganese superoxide dismutase (MnSOD) to evaluate its therapeutic potential in MW. Microinjection of HSV vectors expressing MnSOD into the PAG reduced the MW syndrome. MnSOD vectors suppressed the upregulated mitochondrial superoxide, and endoplasmic reticulum stress markers (glucose-related protein 78 (GRP78) and activating transcription factor 6 alpha (ATF6α)) in the PAG induced by MW. Immunostaining showed that mitochondrial superoxide, GRP78 and ATF6α were colocalized with neuronal nuclei (a neuronal-specific marker), suggesting that they are located in the neurons in the PAG. These results suggest that overexpression of MnSOD by HSV vectors may relieve opioid dependence. This study may provide a novel therapeutic approach to morphine physical withdrawal response.

Collaboration


Dive into the Shue Liu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge