Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shuhei Ono is active.

Publication


Featured researches published by Shuhei Ono.


Earth and Planetary Science Letters | 2003

New insights into Archean sulfur cycle from mass-independent sulfur isotope records from the Hamersley Basin, Australia

Shuhei Ono; Jennifer L. Eigenbrode; Alexander Anatolevich Pavlov; Pushker Kharecha; Douglas Rumble; James F. Kasting; Katherine H. Freeman

We have measured multiple sulfur isotope ratios ( 34 S/ 33 S/ 32 S) for sulfide sulfur in shale and carbonate lithofacies from the Hamersley Basin, Western Australia. The v 33 S values (v 33 SWN 33 S30.515UN 34 S) shift from 31.9 to +6.9x over a 22-m core section of the lower Mount McRae Shale (V2.5 Ga). Likewise, sulfide sulfur analyses of the Jeerinah Formation (V2.7 Ga) yield v 33 S values of 30.1 to +8.1x over a 50-m section of core. Despite wide variations in v 33 S and N 34 S, these two shale units yield a similar positive correlation between v 33 S and N 34 S. In contrast, pyrite sulfur analyses of the Carawine Dolomite (V2.6 Ga) yield a broad range in N 34 S (+3.2 to +16.2x) but a relatively small variation and negative values in v 33 S( 32.5 to 31.1x). The stratigraphic distribution of N 33 S, N 34 S, and v 33 S in Western Australia allows us to speculate on the sulfur isotopic composition of Archean sulfur reservoirs and to trace pathways in the Archean sulfur cycle. Our data are explained by a combination of massindependent fractionation (MIF) in the atmosphere and biological mass-dependent fractionation in the ocean. In the Archean, volcanic, sulfur-bearing gas species were photolysed by solar ultraviolet (UV) radiation in an oxygen-free atmosphere, resulting in MIF of sulfur isotopes. Aerosols of S8 (with v 33 Ss 0) and sulfuric acid (with v 33 S6 0) formed from the products of UV photolysis and carried mass-independently fractionated sulfur into the hydrosphere. The signatures of atmospheric photolysis were preserved by precipitation of pyrite in sediments. Pyrite precipitation was mediated by microbial enzymatic catalysis that superimposed mass-dependent fractionation on mass-independent atmospheric effects. Multiple sulfur isotope analyses provide new insights into the early evolution of the atmosphere and the evolution and distribution of early sulfur-metabolizing organisms. A 2003 Elsevier Science B.V. All rights reserved.


Science | 2011

Large Sulfur Isotope Fractionation Does Not Require Disproportionation

Min Sub Sim; Tanja Bosak; Shuhei Ono

In the absence of oxygenation, microbial activity can explain the magnitude of sulfur-isotope traces in sediments. The composition of sulfur isotopes in sedimentary sulfides and sulfates traces the sulfur cycle throughout Earth’s history. In particular, depletions of sulfur-34 (34S) in sulfide relative to sulfate exceeding 47 per mil (‰) often serve as a proxy for the disproportionation of intermediate sulfur species in addition to sulfate reduction. Here, we demonstrate that a pure, actively growing culture of a marine sulfate-reducing bacterium can deplete 34S by up to 66‰ during sulfate reduction alone and in the absence of an extracellular oxidative sulfur cycle. Therefore, similar magnitudes of sulfur isotope fractionation in sedimentary rocks do not unambiguously record the presence of other sulfur-based metabolisms or the stepwise oxygenation of Earth’s surface environment during the Proterozoic.


Science | 2013

Evidence for Microbial Carbon and Sulfur Cycling in Deeply Buried Ridge Flank Basalt

Mark A. Lever; Olivier J. Rouxel; Jeffrey C. Alt; Nobumichi Shimizu; Shuhei Ono; Rosalind M. Coggon; Wayne C. Shanks; Laura L. Lapham; Marcus Elvert; Xavier Prieto-Mollar; Kai-Uwe Hinrichs; Fumio Inagaki; Andreas Teske

Under the Sea Floor Microorganisms living in basaltic sea floor buried beneath sediments derive energy from inorganic components from the host rocks that interact with infiltrating seawater, which brings dissolved oxygen and other trace nutrients with it. Lever et al. (p. 1305) directly sampled the subseafloor community off the eastern flank of the Juan de Fuca Ridge in the Pacific Ocean and found evidence for ongoing microbial sulfate reduction and methanogenesis. Multiyear incubation experiments with samples of host rock confirmed the microbial activities measured in situ. Active methane- and sulfur-cycling microbial communities exist in deep basaltic ocean crust. Sediment-covered basalt on the flanks of mid-ocean ridges constitutes most of Earths oceanic crust, but the composition and metabolic function of its microbial ecosystem are largely unknown. By drilling into 3.5-million-year-old subseafloor basalt, we demonstrated the presence of methane- and sulfur-cycling microbes on the eastern flank of the Juan de Fuca Ridge. Depth horizons with functional genes indicative of methane-cycling and sulfate-reducing microorganisms are enriched in solid-phase sulfur and total organic carbon, host δ13C- and δ34S-isotopic values with a biological imprint, and show clear signs of microbial activity when incubated in the laboratory. Downcore changes in carbon and sulfur cycling show discrete geochemical intervals with chemoautotrophic δ13C signatures locally attenuated by heterotrophic metabolism.


Science | 2015

Exploring deep microbial life in coal-bearing sediment down to ~2.5 km below the ocean floor

Fumio Inagaki; Kai-Uwe Hinrichs; Yusuke Kubo; Marshall W Bowles; Verena B Heuer; W L Hong; Tatsuhiko Hoshino; Akira Ijiri; Hiroyuki Imachi; Motoo Ito; Masanori Kaneko; Mark A. Lever; Yu-Shih Lin; Barbara A. Methé; Sumito Morita; Yuki Morono; Wataru Tanikawa; M Bihan; Stephen A. Bowden; Marcus Elvert; Clemens Glombitza; D Gross; Guy J. Harrington; Tomoyuki Hori; Kelvin Li; D Limmer; C H Liu; Masafumi Murayama; Naohiko Ohkouchi; Shuhei Ono

A deep sleep in coal beds Deep below the ocean floor, microorganisms from forest soils continue to thrive. Inagaki et al. analyzed the microbial communities in several drill cores off the coast of Japan, some sampling more than 2 km below the seafloor (see the Perspective by Huber). Although cell counts decreased with depth, deep coal beds harbored active communities of methanogenic bacteria. These communities were more similar to those found in forest soils than in other deep marine sediments. Science, this issue p. 420; see also p. 376 Coal beds more than 2 kilometers below the seafloor host methanogenic bacteria related to those found in forest soils. [Also see Perspective by Huber] Microbial life inhabits deeply buried marine sediments, but the extent of this vast ecosystem remains poorly constrained. Here we provide evidence for the existence of microbial communities in ~40° to 60°C sediment associated with lignite coal beds at ~1.5 to 2.5 km below the seafloor in the Pacific Ocean off Japan. Microbial methanogenesis was indicated by the isotopic compositions of methane and carbon dioxide, biomarkers, cultivation data, and gas compositions. Concentrations of indigenous microbial cells below 1.5 km ranged from <10 to ~104 cells cm−3. Peak concentrations occurred in lignite layers, where communities differed markedly from shallower subseafloor communities and instead resembled organotrophic communities in forest soils. This suggests that terrigenous sediments retain indigenous community members tens of millions of years after burial in the seabed.


Philosophical Transactions of the Royal Society B | 2006

Palaeoclimates: the first two billion years

James F. Kasting; Shuhei Ono

Earths climate during the Archaean remains highly uncertain, as the relevant geologic evidence is sparse and occasionally contradictory. Oxygen isotopes in cherts suggest that between 3.5 and 3.2 Gyr ago (Ga) the Archaean climate was hot (55–85 °C); however, the fact that these cherts have experienced only a modest amount of weathering suggests that the climate was temperate, as today. The presence of diamictites in the Pongola Supergroup and the Witwatersrand Basin of South Africa suggests that by 2.9 Ga the climate was glacial. The Late Archaean was relatively warm; then glaciation (possibly of global extent) reappeared in the Early Palaeoproterozoic, around 2.3–2.4 Ga. Fitting these climatic constraints with a model requires high concentrations of atmospheric CO2 or CH4, or both. Solar luminosity was 20–25% lower than today, so elevated greenhouse gas concentrations were needed just to keep the mean surface temperature above freezing. A rise in O2 at approximately 2.4 Ga, and a concomitant decrease in CH4, provides a natural explanation for the Palaeoproterozoic glaciations. The Mid-Archaean glaciations may have been caused by a drawdown in H2 and CH4 caused by the origin of bacterial sulphate reduction. More work is needed to test this latter hypothesis.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Manganese-oxidizing photosynthesis before the rise of cyanobacteria

Jena E. Johnson; Samuel M. Webb; Katherine Thomas; Shuhei Ono; Joseph L. Kirschvink; Woodward W. Fischer

The emergence of oxygen-producing (oxygenic) photosynthesis fundamentally transformed our planet; however, the processes that led to the evolution of biological water splitting have remained largely unknown. To illuminate this history, we examined the behavior of the ancient Mn cycle using newly obtained scientific drill cores through an early Paleoproterozoic succession (2.415 Ga) preserved in South Africa. These strata contain substantial Mn enrichments (up to ∼17 wt %) well before those associated with the rise of oxygen such as the ∼2.2 Ga Kalahari Mn deposit. Using microscale X-ray spectroscopic techniques coupled to optical and electron microscopy and carbon isotope ratios, we demonstrate that the Mn is hosted exclusively in carbonate mineral phases derived from reduction of Mn oxides during diagenesis of primary sediments. Additional observations of independent proxies for O2—multiple S isotopes (measured by isotope-ratio mass spectrometry and secondary ion mass spectrometry) and redox-sensitive detrital grains—reveal that the original Mn-oxide phases were not produced by reactions with O2, which points to a different high-potential oxidant. These results show that the oxidative branch of the Mn cycle predates the rise of oxygen, and provide strong support for the hypothesis that the water-oxidizing complex of photosystem II evolved from a former transitional photosystem capable of single-electron oxidation reactions of Mn.


Science Advances | 2016

Rapid oxygenation of Earth’s atmosphere 2.33 billion years ago

Genming Luo; Shuhei Ono; Nicolas J. Beukes; David T. Wang; Shucheng Xie; Roger E. Summons

Continuous multiple sulfur isotope profiles from South African rocks pinpoint the Great Oxygenation Event in the geologic record. Molecular oxygen (O2) is, and has been, a primary driver of biological evolution and shapes the contemporary landscape of Earth’s biogeochemical cycles. Although “whiffs” of oxygen have been documented in the Archean atmosphere, substantial O2 did not accumulate irreversibly until the Early Paleoproterozoic, during what has been termed the Great Oxygenation Event (GOE). The timing of the GOE and the rate at which this oxygenation took place have been poorly constrained until now. We report the transition (that is, from being mass-independent to becoming mass-dependent) in multiple sulfur isotope signals of diagenetic pyrite in a continuous sedimentary sequence in three coeval drill cores in the Transvaal Supergroup, South Africa. These data precisely constrain the GOE to 2.33 billion years ago. The new data suggest that the oxygenation occurred rapidly—within 1 to 10 million years—and was followed by a slower rise in the ocean sulfate inventory. Our data indicate that a climate perturbation predated the GOE, whereas the relationships among GOE, “Snowball Earth” glaciation, and biogeochemical cycling will require further stratigraphic correlation supported with precise chronologies and paleolatitude reconstructions.


Geobiology | 2010

Formation and stability of oxygen-rich bubbles that shape photosynthetic mats

Tanja Bosak; John W. M. Bush; M. R. Flynn; Biqing Liang; Shuhei Ono; Alexander P. Petroff; Min Sub Sim

Gas release in photic-zone microbialites can lead to preservable morphological biosignatures. Here, we investigate the formation and stability of oxygen-rich bubbles enmeshed by filamentous cyanobacteria. Sub-millimetric and millimetric bubbles can be stable for weeks and even months. During this time, lithifying organic-rich laminae surrounding the bubbles can preserve the shape of bubbles. Cm-scale unstable bubbles support the growth of centimetric tubular towers with distinctly laminated mineralized walls. In environments that enable high photosynthetic rates, only small stable bubbles will be enclosed by a dense microbial mesh, while in deep waters extensive microbial mesh will cover even larger photosynthetic bubbles, increasing their preservation potential. Stable photosynthetic bubbles may be preserved as sub-millimeter and millimeter-diameter features with nearly circular cross-sections in the crests of some Proterozoic conical stromatolites, while centrimetric tubes formed around unstable bubbles provide a model for the formation of tubular carbonate microbialites that are not markedly depleted in (13)C.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Vibronic origin of sulfur mass-independent isotope effect in photoexcitation of SO2 and the implications to the early earth’s atmosphere

Andrew R. Whitehill; Changjian Xie; Xixi Hu; Daiqian Xie; Hua Guo; Shuhei Ono

Signatures of mass-independent isotope fractionation (MIF) are found in the oxygen (16O,17O,18O) and sulfur (32S, 33S, 34S, 36S) isotope systems and serve as important tracers of past and present atmospheric processes. These unique isotope signatures signify the breakdown of the traditional theory of isotope fractionation, but the physical chemistry of these isotope effects remains poorly understood. We report the production of large sulfur isotope MIF, with Δ33S up to 78‰ and Δ36S up to 110‰, from the broadband excitation of SO2 in the 250–350-nm absorption region. Acetylene is used to selectively trap the triplet-state SO2 (3B1), which results from intersystem crossing from the excited singlet (1A2/1B1) states. The observed MIF signature differs considerably from that predicted by isotopologue-specific absorption cross-sections of SO2 and is insensitive to the wavelength region of excitation (above or below 300 nm), suggesting that the MIF originates not from the initial excitation of SO2 to the singlet states but from an isotope selective spin–orbit interaction between the singlet (1A2/1B1) and triplet (3B1) manifolds. Calculations based on high-level potential energy surfaces of the multiple excited states show a considerable lifetime anomaly for 33SO2 and 36SO2 for the low vibrational levels of the 1A2 state. These results demonstrate that the isotope selectivity of accidental near-resonance interactions between states is of critical importance in understanding the origin of MIF in photochemical systems.


Deep-sea Research Part Ii-topical Studies in Oceanography | 2001

Shallow remineralization in the Sargasso Sea estimated from seasonal variations in oxygen, dissolved inorganic carbon and nitrate

Shuhei Ono; A. Ennyu; Raymond G. Najjar; Nicholas R. Bates

A diagnostic model of the mean annual cycles of oxygen, dissolved inorganic carbon (DIC) and nitrate below the mixed layer at the Bermuda Atlantic Time-Series Study (BATS) site is presented and used to estimate organic matter remineralization in the seasonal thermocline. The model includes lateral and vertical advection as well as vertical diffusion, which are found to be significant components of the seasonal budgets of oxygen, DIC and nitrate. The vertical and seasonal variation of the remineralization rates deduced from the oxygen and DIC distributions are very similar. Both locate the spring–summer community compensation depth at ?85 m and the remineralization rate maximum at ?120 m; nitrate-based estimates of these depths are about 40 m greater. Remineralization rates based on oxygen, DIC and nitrate all show the seasonal maximum to occur in the late spring, presumably reflecting the decomposition of organic matter formed during the spring bloom. The remineralization rate integrated between 100 and 250 m and between mid-April and mid-December is estimated to be 2.08±0.38 mol O2 m?2, 1.53±0.35 mol C m?2 and 0.080±0.046 mol N m?2. These imply remineralization ratios of O2 : C=1.4±0.40 and C : N=19±12. The former agrees well with the canonical Redfield ratio and the latter is significantly larger. The analysis is consistent with the export and remineralization of nitrogen-poor organic matter from surface waters.

Collaboration


Dive into the Shuhei Ono's collaboration.

Top Co-Authors

Avatar

Douglas Rumble

Carnegie Institution for Science

View shared research outputs
Top Co-Authors

Avatar

David T. Wang

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Andrew R. Whitehill

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Tanja Bosak

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Min Sub Sim

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Nicolas J. Beukes

University of Johannesburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wayne C. Shanks

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge