Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shuhei Sakakibara is active.

Publication


Featured researches published by Shuhei Sakakibara.


Journal of Virology | 2001

Octamer-Binding Sequence Is a Key Element for the Autoregulation of Kaposi's Sarcoma-Associated Herpesvirus ORF50/Lyta Gene Expression

Shuhei Sakakibara; Keiji Ueda; Jiguo Chen; Toshiomi Okuno; Koichi Yamanishi

ABSTRACT The expression of the Kaposis sarcoma-associated herpesvirus (KSHV) open reading frame 50 (ORF50) protein, Lyta (lytic transactivator), marks the switch from latent KSHV infection to the lytic phase. ORF50/Lyta upregulates several target KSHV genes, such as K8 (K-bZip), K9 (vIRF1), and ORF57, finally leading to the production of mature viruses. The auto-upregulation of ORF50/Lyta is thought to be an important mechanism for efficient lytic viral replication. In this study, we focused on this autoregulation and identified the promoter element required for it. An electrophoretic mobility shift assay indicated that the octamer-binding protein 1 (Oct-1) bound to this element. Mutations in the octamer-binding motif resulted in refractoriness of the ORF50/Lyta promoter to transactivation by ORF50/Lyta, and Oct-1 expression enhanced this transactivation. These results suggest that the autoregulation of ORF50/Lyta is mediated by Oct-1.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Activation of latent Kaposi's sarcoma-associated herpesvirus by demethylation of the promoter of the lytic transactivator

Jiguo Chen; Keiji Ueda; Shuhei Sakakibara; Toshiomi Okuno; Carlo Parravicini; Mario Corbellino; Koichi Yamanishi

Kaposis sarcoma-associated herpesvirus (KSHV) is strongly linked to Kaposis sarcoma, primary effusion lymphomas, and a subset of multicentric Castlemans disease. The mechanism by which this virus establishes latency and reactivation is unknown. KSHV Lyta (lytic transactivator, also named KSHV/Rta), mainly encoded by the ORF 50 gene, is a lytic switch gene for viral reactivation from latency, inasmuch as it is both essential and sufficient to drive the entire viral lytic cycle. Here we show that the Lyta promoter region was heavily methylated in latently infected cells. Treatment of primary effusion lymphoma-delivered cell lines with tetradecanoylphorbol acetate caused demethylation of the Lyta promoter and induced KSHV lytic phase in vitro. Methylation cassette assay shows demethylation of the Lyta promoter region was essential for the expression of Lyta. In vivo, biopsy samples obtained from patients with KSHV-related diseases show the most demethylation in the Lyta promoter region, whereas samples from a latently infected KSHV carrier remained in a methylated status. These results suggest a relationship among a demethylation status in the Lyta promoter, the reactivation of KSHV, and the development of KSHV-associated diseases.


Journal of Virology | 2000

Transcriptional Regulation of the Kaposi's Sarcoma-Associated Herpesvirus Viral Interferon Regulatory Factor Gene

Jiguo Chen; Keiji Ueda; Shuhei Sakakibara; Toshiomi Okuno; Koichi Yamanishi

ABSTRACT The Kaposis sarcoma-associated herpesvirus (KSHV), or human herpesvirus 8, open reading frame (ORF) K9 encodes a viral interferon regulatory factor (vIRF) that functions as a repressor for interferon-mediated signal transduction. Consequently, this gene is thought to play an important role in the tumorigenicity of KSHV. To understand the molecular mechanisms underlying vIRF expression, we studied the transcriptional regulation of this gene. Experiments using 5′ rapid amplification of cDNA ends and primer extension revealed that vIRF had different transcriptional patterns during the latent and lytic phases. The promoter region of the minor transcript, which was mainly expressed in uninduced BCBL-1 cells, did not contain a canonical TATA box, but a cap-like element and an initiator element flanked the transcription start site. The promoter of the major transcript, which was mainly expressed in tetradecanoyl phorbol acetate-induced BCBL-1 cells, contained a canonical TATA box. A luciferase reporter assay using a deletion mutant of the vIRF promoter and a mutation in the TATA box showed that the TATA box was critical for the lytic activity of vIRF. The promoter activity in the latent phase was eight times stronger than that of the empty vector but was less than 10% of the activity in the lytic phase. Therefore, KSHV may use different functional promoter elements to regulate the expression of vIRF and to antagonize the cells interferon-mediated antiviral activity. We have also identified a functional domain in the ORF 50 protein, an immediate-early gene product that is mainly encoded by ORF 50. The ORF 50 protein transactivated the vIRF and DNA polymerase promoters in BCBL-1, 293T, and CV-1 cells. Deleting one of its two putative nuclear localization signals (NLSs) resulted in failure of the ORF 50 protein to localize to the nucleus and consequently abrogated its transactivating activity. We further confirmed that the N-terminal region of the ORF 50 protein included an NLS domain. We found that this domain was sufficient to translocate β-galactosidase to the nucleus. Analysis of deletions within the vIRF promoter suggested that two sequence domains were important for its transactivation by the ORF 50 protein, both of which included putative SP-1 and AP-1 binding sites. Competition gel shift assays demonstrated that SP-1 bound to these two domains, suggesting that the SP-1 binding sites in the vIRF promoter are involved in its transactivation by ORF 50.


Blood | 2009

EphrinB reverse signaling contributes to endothelial and mural cell assembly into vascular structures

Ombretta Salvucci; Dragan Maric; Matina Economopoulou; Shuhei Sakakibara; Simone Merlin; Antonia Follenzi; Giovanna Tosato

EphrinB transmembrane ligands and their cognate EphB receptor tyrosine kinases regulate vascular development through bidirectional cell-to-cell signaling, but little is known about the role of EphrinB during postnatal vascular remodeling. We report that EphrinB is a critical mediator of postnatal pericyte-to-endothelial cell assembly into vascular structures. This function is dependent upon extracellular matrix-supported cell-to-cell contact, engagement of EphrinB by EphB receptors expressed on another cell, and Src-dependent phosphorylation of the intracytoplasmic domain of EphrinB. Phosphorylated EphrinB marks angiogenic blood vessels in the developing and hypoxic retina, the wounded skin, and tumor tissue, and is detected at contact points between endothelial cells and pericytes. Furthermore, inhibition ofEphrinB activity prevents proper assembly of pericytes and endothelial cells into vascular structures. These results reveal a role for EphrinB signaling in orchestrating pericyte/endothelial cell assembly, and suggest that therapeutic targeting of EphrinB may prove useful for disrupting angiogenesis when it contributes to disease.


Journal of Virology | 2004

Accumulation of Heterochromatin Components on the Terminal Repeat Sequence of Kaposi's Sarcoma-Associated Herpesvirus Mediated by the Latency-Associated Nuclear Antigen

Shuhei Sakakibara; Keiji Ueda; Ken Nishimura; Eunju Do; Eriko Ohsaki; Toshiomi Okuno; Koichi Yamanishi

ABSTRACT In the latent infection of Kaposis sarcoma-associated herpesvirus (KSHV), its 160-kb circularized episomal DNA is replicated and maintained in the host nucleus. KSHV latency-associated nuclear antigen (LANA) is a key factor for maintaining viral latency. LANA binds to the terminal repeat (TR) DNA of the viral genome, leading to its localization to specific dot structures in the nucleus. In such an infected cell, the expression of the viral genes is restricted by a mechanism that is still unclear. Here, we found that LANA interacts with SUV39H1 histone methyltransferase, a key component of heterochromatin formation, as determined by use of a DNA pull-down assay with a biotinylated DNA fragment that contained a LANA-specific binding sequence and a maltose-binding protein pull-down assay. The diffuse localization of LANA on the chromosomes of uninfected cells changed to a punctate one with the introduction of a bacterial artificial chromosome containing most of the TR region, and SUV39H1 clearly colocalized with the LANA-associated dots. Thus, the LANA foci in KSHV-infected cells seemed to include SUV39H1 as well as heterochromatin protein 1. Furthermore, a chromatin immunoprecipitation assay revealed that the TR and the open reading frame (ORF) K1 and ORF50/RTA genes, but not the ORF73/LANA gene, lay within the heterochromatin during KSHV latency. Taken together, these observations indicate that LANA recruits heterochromatin components to the viral genome, which may lead to the establishment of viral latency and govern the transcription program.


Journal of Virology | 2002

Kaposi's Sarcoma-Associated Herpesvirus (Human Herpesvirus 8) Replication and Transcription Factor Activates the K9 (vIRF) Gene through Two Distinct cis Elements by a Non-DNA-Binding Mechanism

Keiji Ueda; Kayo Ishikawa; Ken Nishimura; Shuhei Sakakibara; Eunju Do; Koichi Yamanishi

ABSTRACT The replication and transcription activator (RTA) of Kaposis sarcoma-associated herpesvirus (KSHV), or human herpesvirus 8, a homologue of Epstein-Barr virus BRLF1 or Rta, is a strong transactivator and inducer of lytic replication. RTA acting alone can induce lytic replication of KSHV in infected cell lines that originated from primary effusion lymphomas, leading to virus production. During the lytic replication process, RTA activates many kinds of genes, including polyadenylated nuclear RNA, K8, K9 (vIRF), ORF57, and so on. We focused here on the mechanism of how RTA upregulates the K9 (vIRF) promoter and identified two independent cis-acting elements in the K9 (vIRF) promoter that responded to RTA. These elements were finally confined to the sequence 5′-TCTGGGACAGTC-3′ in responsive element (RE) I-2B and the sequence 5′-GTACTTAAAATA-3′ in RE IIC-2, both of which did not share sequence homology. Multiple factors bound specifically with these elements, and their binding was correlated with the RTA-responsive activity. Electrophoretic mobility shift assay with nuclear extract from infected cells and the N-terminal part of RTA expressed in Escherichia coli, however, did not show that RTA interacted directly with these elements, in contrast to the RTA responsive elements in the PAN/K12 promoter region, the ORF57/K8 promoter region. Thus, it was likely that RTA could transactivate several kinds of unique cis elements without directly binding to the responsive elements, probably through cooperation with other DNA-binding factors.


Journal of Virology | 2004

Poly(ADP-Ribose) Polymerase 1 Binds to Kaposi's Sarcoma-Associated Herpesvirus (KSHV) Terminal Repeat Sequence and Modulates KSHV Replication in Latency

Eriko Ohsaki; Keiji Ueda; Shuhei Sakakibara; Eunju Do; Kaori Yada; Koichi Yamanishi

ABSTRACT During latency, Kaposis sarcoma-associated herpesvirus (KSHV) is thought to replicate once and to be partitioned in synchrony with the cell cycle of the host. In this replication cycle, the KSHV terminal repeat (TR) sequence functions as a replication origin, assisted by the latency-associated nuclear antigen (LANA). Thus, TR seems to function as a cis element for the replication and partitioning of the KSHV genome. Viral replication and partitioning are also likely to require cellular factors that interact with TR in either a LANA-dependent or -independent manner. Here, we sought to identify factors that associate with TR by using a TR DNA column and found that poly(ADP-ribose) polymerase 1 (PARP1) and known replication factors, including ORC2, CDC6, and Mcm7, bound to TR. PARP1 bound directly to a specific region within TR independent of LANA, and LANA was poly(ADP-ribosyl)ated by PARP1. Drugs such as hydroxyurea and niacinamide, which raise or lower PARP activity, respectively, affected the virus copy number in infected cells. Thus, the poly(ADP-ribosyl)ation status of LANA appears to affect the replication and/or maintenance of the viral genome. Drugs that specifically up-regulate PARP activity may lead to the disappearance of latent KSHV.


Journal of Virology | 2009

Gene regulation and functional alterations induced by Kaposi's sarcoma-associated herpesvirus-encoded ORFK13/vFLIP in endothelial cells.

Shuhei Sakakibara; Cynthia A. Pise-Masison; John N. Brady; Giovanna Tosato

ABSTRACT Kaposis sarcoma (KS) is an angioproliferative inflammatory disorder induced by endothelial cell infection with the KS-associated herpesvirus (KSHV). ORFK13/vFLIP, one of the KSHV genes expressed in KS, encodes a 188-amino-acid protein which binds to the Iκb kinase (IKK) complex to activate NF-κB. We examined ORFK13/vFLIP contribution to KS phenotype and potential for therapeutic targeting. Retroviral transduction of ORFK13/vFLIP into primary human endothelial cells induces the spindle morphology distinctive of KS cells and promotes the formation of abnormal vascular networks typical of KS vasculature; upregulates the expression of proinflammatory cytokines, chemokines, and interferon-responsive genes; and stimulates the adhesion of inflammatory cells characteristic of KS lesions. Thymidine phosphorylase, a cellular enzyme markedly induced by ORFK13/vFLIP, can metabolize the prodrug 5-fluoro-5-deoxyuridine (5-dFUrd) to 5-fluouridine (5-FU), a potent thymidine synthase inhibitor, which blocks DNA and RNA synthesis. When tested for cytotoxicity, 5-dFUrd (0.1 to 1 μM) selectively killed ORFK13/vFLIP-expressing endothelial cells while sparing control cells. These results demonstrate that ORFK13/vFLIP directly and indirectly contributes to the inflammatory and vascular phenotype of KS and identify 5-dFUrd as a potential new drug that targets KSHV latency for the treatment of KS and other KSHV-associated malignancies.


Haematologica | 2012

MicroRNA126 contributes to granulocyte colony-stimulating factor-induced hematopoietic progenitor cell mobilization by reducing the expression of vascular cell adhesion molecule 1.

Ombretta Salvucci; Kan Jiang; Paola Gasperini; Dragan Maric; Shuhei Sakakibara; Georgina Espígol-Frigolé; Shushang Wang; Giovanna Tosato

Background Mobilization of hematopoietic stem/progenitor cells from the bone marrow to the peripheral blood by granulocyte colony-stimulating factor is the primary means to acquire stem cell grafts for hematopoietic cell transplantation. Since hematopoietic stem/progenitor cells represent a minority of all blood cells mobilized by granulocyte colony-stimulating factor, the underlying mechanisms need to be understood in order to develop selective drugs. Design and Methods We analyzed phenotypic, biochemical and genetic changes in bone marrow cell populations from granulocyte colony-stimulating factor-mobilized and control mice, and linked such changes to effective mobilization of hematopoietic stem/progenitor cells. Results We show that granulocyte colony-stimulating factor indirectly reduces expression of surface vascular cell adhesion molecule 1 on bone marrow hematopoietic stem/progenitor cells, stromal cells and endothelial cells by promoting the accumulation of microRNA-126 (miR126)-containing microvescicles in the bone marrow extracellular compartment. We found that hematopoietic stem/progenitor cells, stromal cells and endothelial cells readily incorporate these miR126-loaded microvescicles, and that miR126 represses vascular cell adhesion molecule 1 expression on bone marrow hematopoietic stem/progenitor cells, stromal cells and endothelial cells. In line with this, miR126-null mice displayed a reduced mobilization response to granulocyte colony-stimulating factor. Conclusions Our results implicate miR126 in the regulation of hematopoietic stem/progenitor cell trafficking between the bone marrow and peripheral sites, clarify the role of vascular cell adhesion molecule 1 in granulocyte colony-stimulating factor-mediated mobilization, and have important implications for improved approaches to selective mobilization of hematopoietic stem/progenitor cells.


Journal of Interferon and Cytokine Research | 2011

Viral Interleukin-6: Role in Kaposi's Sarcoma-Associated Herpesvirus–Associated Malignancies

Shuhei Sakakibara; Giovanna Tosato

Viral interleukin-6 (vIL-6) is a product of Kaposis sarcoma-associated herpesvirus (KSHV) expressed in latently infected cells and to a higher degree during viral replication. A distinctive feature of vIL-6 is the ability to directly bind and activate gp130 signaling in the absence of other receptor subunits. Secretion of vIL-6 is generally poor, but vIL-6 can activate gp130 from inside the cell. Due to the wide cell distribution of gp130, vIL-6 has the potential to induce a wide range of biological effects. Expression of vIL-6 is variable in KSHV-associated Kaposis sarcoma (KS), primary effusion lymphoma (PEL), multicentric Castlemans disease (MCD), and in a newly described MCD-like systemic inflammatory syndrome observed in human immunodeficiency virus-positive patients. PEL effusions usually contain vIL-6 at high concentrations; since vIL-6 induces vascular endothelial growth factor, vIL-6 likely contributes to vascular permeability and formation of PEL effusions. Lymph nodes affected with MCD contain vIL-6-positive cells, and vIL-6 levels rise in conjunction with flares of the disease and likely contribute to symptoms of inflammation. The development of vIL-6 inhibitors is a potentially important advance in the treatment of KSHV-associated malignancies where vIL-6 is expressed.

Collaboration


Dive into the Shuhei Sakakibara's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giovanna Tosato

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Toshiomi Okuno

Hyogo College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dragan Maric

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge