Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shuichi Igarashi is active.

Publication


Featured researches published by Shuichi Igarashi.


Nature Genetics | 1994

Unstable expansion of CAG repeat in hereditary dentatorubral–pallidoluysian atrophy (DRPLA)

Reiji Koide; Takeshi Ikeuchi; Osamu Onodera; Hirosato Tanaka; Shuichi Igarashi; Kotaro Endo; Hitoshi Takahashi; Rui Kondo; Atsushi Ishikawa; Tsunemi Hayashi; Masaaki Saito; Akemi Tomoda; Teruhisa Miike; Haruhiko Naito; Fusahiro Ikuta; Shoji Tsuji

Hereditary dentatorubral–pallidoluysian atrophy (DRPLA) is an autosomal dominant neurologic disorder characterized by variable combinations of myoclonus, epilepsy, cerebellar ataxia, choreoathetosis and dementia. By specifically searching published brain cDNA sequences for the presence of CAG repeats we identified unstable expansion of a CAG in a gene on chromosome 12 in all the 22 DRPLA patients examined. A good correlation between the size of the CAG repeat expansion and the ages of disease onset is found in this group. Patients with earlier onset tended to have a phenotype of progressive myoclonus epilepsy and larger expansions. We propose that the wide variety of clinical manifestations of DRPLA can now be explained by the variable unstable expansion of the CAG repeat.


Nature Genetics | 1996

Identification of the spinocerebellar ataxia type 2 gene using a direct identification of repeat expansion and cloning technique, DIRECT.

Kazuhiro Sanpei; Hiroki Takano; Shuichi Igarashi; Toshiya Sato; Mutsuo Oyake; Hidenao Sasaki; Akemi Wakisaka; K. Tashiro; Y. Ishida; Takeshi Ikeuchi; Reiji Koide; Masaaki Saito; Aki Sato; T. Tanaka; S. Hanyu; Yoshihisa Takiyama; Masatoyo Nishizawa; Natsue Shimizu; Yoshiko Nomura; Masaya Segawa; Kiyoshi Iwabuchi; I. Eguchi; Hirosato Tanaka; Hitoshi Takahashi; Shoji Tsuji

Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominant, neurodegenerative disorder that affects the cerebellum and other areas of the central nervous system. We have devised a novel strategy, the direct identification of repeat expansion and cloning technique (DIRECT), which allows selective detection of expanded GAG repeats and cloning of the genes involved. By applying DIRECT, we identified an expanded CAG repeat of the gene for SCA2. CAG repeats of normal alleles range in size from 15 to 24 repeat units, while those of SCA2 chromosomes are expanded to 35 to 59 repeat units. The SCA2 cDNA is predicted to code for 1,313 amino acids — with the CAG repeats coding for a polyglutamine tract. DIRECT is a robust strategy for identification of pathologically expanded trinucleotide repeats and will dramatically accelerate the search for causative genes of neuropsychiatric diseases caused by trinucleotide repeat expansions.


Neuron | 2005

p53 Mediates Cellular Dysfunction and Behavioral Abnormalities in Huntington’s Disease

Byoung-Il Bae; Hong Xu; Shuichi Igarashi; Masahiro Fujimuro; Nishant Agrawal; Yoichi Taya; S. Diane Hayward; Timothy H. Moran; Craig Montell; Christopher A. Ross; Solomon H. Snyder; Akira Sawa

We present evidence for a specific role of p53 in the mitochondria-associated cellular dysfunction and behavioral abnormalities of Huntingtons disease (HD). Mutant huntingtin (mHtt) with expanded polyglutamine (polyQ) binds to p53 and upregulates levels of nuclear p53 as well as p53 transcriptional activity in neuronal cultures. The augmentation is specific, as it occurs with mHtt but not mutant ataxin-1 with expanded polyQ. p53 levels are also increased in the brains of mHtt transgenic (mHtt-Tg) mice and HD patients. Perturbation of p53 by pifithrin-alpha, RNA interference, or genetic deletion prevents mitochondrial membrane depolarization and cytotoxicity in HD cells, as well as the decreased respiratory complex IV activity of mHtt-Tg mice. Genetic deletion of p53 suppresses neurodegeneration in mHtt-Tg flies and neurobehavioral abnormalities of mHtt-Tg mice. Our findings suggest that p53 links nuclear and mitochondrial pathologies characteristic of HD.


Nature Genetics | 1998

Suppression of aggregate formation and apoptosis by transglutaminase inhibitors in cells expressing truncated DRPLA protein with an expanded polyglutamine stretch

Shuichi Igarashi; Reiji Koide; Takayoshi Shimohata; Mitsunori Yamada; Yasuko Hayashi; Hiroki Takano; Hidetoshi Date; Mutsuo Oyake; Toshiya Sato; Aki Sato; Shigekimi Egawa; Takeshi Ikeuchi; Hajime Tanaka; Ryoichi Nakano; Keiko Tanaka; Isao Hozumi; Takashi Inuzuka; Hitoshi Takahashi; Shoji Tsuji

To elucidate the molecular mechanisms whereby expanded polyglutamine stretches elicit a gain of toxic function, we expressed full-length and truncated DRPLA (dentatorubral-pallidoluysian atrophy) cDNAs with or without expanded CAG repeats in COS-7 cells. We found that truncated DRPLA proteins containing an expanded polyglutamine stretch form filamentous peri- and intranuclear aggregates and undergo apoptosis. The apoptotic cell death was partially suppressed by the transglutaminase inhibitors cystamine and monodansyl cadaverine (but not putrescine), suggesting involvement of a transglutaminase reaction and providing a potential basis for the development of therapeutic measures for CAG-repeat expansion diseases.


American Journal of Human Genetics | 1998

Close Associations between Prevalences of Dominantly Inherited Spinocerebellar Ataxias with CAG-Repeat Expansions and Frequencies of Large Normal CAG Alleles in Japanese and Caucasian Populations

Hiroki Takano; Géraldine Cancel; Takeshi Ikeuchi; Diego Lorenzetti; R. Mawad; Giovanni Stevanin; Olivier Didierjean; Alexandra Durr; Mutsuo Oyake; T. Shimohata; R. Sasaki; R. Koide; Shuichi Igarashi; S. Hayashi; Yoshihisa Takiyama; Masatoyo Nishizawa; Hirosato Tanaka; Huda Y. Zoghbi; Alexis Brice; Shoji Tsuji

To test the hypothesis that the frequencies of normal alleles (ANs) with a relatively large number of CAG repeats (large ANs) are related to the prevalences of the dominant spinocerebellar ataxias (SCAs)-SCA types 1, 2, 3 (Machado-Joseph disease), 6, and dentatorubral-pallidoluysian atrophy (DRPLA)-we investigated the relative prevalences of these diseases in 202 Japanese and 177 Caucasian families and distributions of the number of CAG repeats of ANs at these disease loci in normal individuals in each population. The relative prevalences of SCA1 and SCA2 were significantly higher in Caucasian pedigrees (15% and 14%, respectively) than in Japanese pedigrees (3% and 5%, respectively), corresponding to the observation that the frequencies of large ANs of SCA1 (alleles >30 repeats) and of SCA2 (alleles >22 repeats) were significantly higher in Caucasians than in Japanese. The relative prevalences of MJD/SCA3, SCA6, and DRPLA were significantly higher in Japanese pedigrees (43%, 11%, and 20%, respectively) than in Caucasian pedigrees (30%, 5%, and 0%, respectively), corresponding to the observation that the frequencies of large ANs of MJD/SCA3 (>27 repeats), SCA6 (>13 repeats), and DRPLA (>17 repeats) were significantly higher in Japanese than in Caucasians. The close correlations of the relative prevalences of the dominant SCAs with the distributions of large ANs strongly support the assumption that large ANs contribute to generation of expanded alleles (AEs) and the relative prevalences of the dominant SCAs.


Neurology | 1992

Strong correlation between the number of CAG repeats in androgen receptor genes and the clinical onset of features of spinal and bulbar muscular atrophy

Shuichi Igarashi; Y. Tanno; Osamu Onodera; Yamazaki M; Shotaro Sato; Atsushi Ishikawa; N. Miyatani; M. Nagashima; Y. Ishikawa; Ko Sahashi; T. Ibi; Tadashi Miyatake; Shoji Tsuji

X-linked spinal and bulbar muscular atrophy (SBMA), a motor neuron disease associated with androgen insensitivity, is caused by androgen receptor gene mutations with an increased number of tandem CAG repeats in exon 1. We investigated the increased number of CAG repeats in androgen receptor genes of 19 SBMA patients and found that this correlated strongly with the age at onset of muscle weakness. Thus, SBMA is the first genetic disease in which a strong correlation between the degree of genetic abnormality (number of CAG tandem repeats) and clinical phenotypic expression is demonstrable. The results further indicate that androgen gene mutation is directly involved in the degeneration of motor neurons.


Acta Neuropathologica | 1998

Hereditary dentatorubral-pallidoluysian atrophy: detection of widespread ubiquitinated neuronal and glial intranuclear inclusions in the brain

Yasuko Hayashi; Akiyoshi Kakita; Mitsunori Yamada; Reiji Koide; Shuichi Igarashi; Hiroki Takano; Takeshi Ikeuchi; Koichi Wakabayashi; Shigekimi Egawa; Shoji Tsuji; Hitoshi Takahashi

Abstract We examined the brains and spinal cords of seven patients with clinicopathologically and genetically confirmed hereditary dentatorubral-pallidoluysian atrophy (DRPLA) using an antibody against ubiquitin, and found small, round immunoreactive intranuclear inclusions in both neurons and glial cells in various brain regions. Ubiquitinated neuronal intranuclear inclusions (uNIIs) were consistently found in the striatum, the pontine nuclei, the inferior olivary complex, the cerebellar cortex and the dentate nucleus. Ubiquitinated glial intranuclear inclusions (uGIIs) were found less frequently than uNIIs. Most of the inclusion-bearing nuclei were of an astrocytic nature. Immunostaining with an antibody against DRPLA protein revealed similar immunoreactive neuronal and glial intranuclear inclusions, but in much smaller in numbers compared with uNIIs and uGIIs. Electron microscopy showed that such inclusions were composed of granular and filamentous structures. These findings strongly suggest that, in DRPLA, the occurrence of uNIIs and uGIIs is directly related to the causative gene abnormality (an expanded CAG repeat encoding polyglutamine), that neurons are affected much more widely than previously recognized and that glial cells are also involved in the disease process.


Annals of Neurology | 2004

Aprataxin, the causative protein for EAOH is a nuclear protein with a potential role as a DNA repair protein

Yasuteru Sano; Hidetoshi Date; Shuichi Igarashi; Osamu Onodera; Mutsuo Oyake; Toshiaki Takahashi; Shintaro Hayashi; Mitsunori Morimatsu; Hitoshi Takahashi; Takao Makifuchi; Nobuyoshi Fukuhara; Shoji Tsuji

Early‐onset ataxia with ocular motor apraxia and hypoalbuminemia (EAOH) is an autosomal recessive neurodegenerative disorder characterized by early‐onset ataxia, ocular motor apraxia, and hypoalbuminemia. Recently, the causative gene for EAOH, APTX, has been identified. Of the two splicing variants of APTX mRNA, the short and the long forms, long‐form APTX mRNA was found to be the major isoform. Aprataxin is mainly located in the nucleus, and, furthermore, the first nuclear localization signal located near the amino terminus of the long‐form aprataxin is essential for its nuclear localization. We found, based on the yeast two‐hybrid and coimmunoprecipitation experiments, that the long‐form but not the short‐form aprataxin interacts with XRCC1 (x‐ray repair cross‐complementing group 1). Interestingly the amino terminus of the long‐form aprataxin is homologous with polynucleotidekinase‐3′‐phosphatase, which has been demonstrated to be involved in base excision repair, a subtype of single‐strand DNA break repair, through interaction with XRCC1, DNA polymerase β, and DNA ligase III. These results strongly support the possibility that aprataxin and XRCC1 constitute a multiprotein complex and are involved in single‐strand DNA break repair, and furthermore, that accumulation of unrepaired damaged DNA underlies the pathophysiological mechanisms of EAOH.


American Journal of Pathology | 2001

Interaction between Neuronal Intranuclear Inclusions and Promyelocytic Leukemia Protein Nuclear and Coiled Bodies in CAG Repeat Diseases

Mitsunori Yamada; Toshiya Sato; Takayoshi Shimohata; Shintaro Hayashi; Shuichi Igarashi; Shoji Tsuji; Hitoshi Takahashi

Neuronal intranuclear inclusions (NIIs) are a pathological hallmark of CAG repeat diseases. To elucidate the influence of NII formation on intranuclear substructures, we investigated the relationship of NIIs with nuclear bodies in brains of dentatorubral-pallidoluysian atrophy and Machado-Joseph disease. In both diseases, promyelocytic leukemia protein, a major component of the promyelocytic leukemia protein nuclear bodies, altered the normal distribution and was rearranged around NII, forming a single capsular structure. We further demonstrated that NIIs were present in close contact with coiled bodies, a highly dynamic domain that may be involved in the biogenesis of small nuclear ribonucleoproteins. The preferential association of intranuclear polyglutamine aggregates with coiled bodies was also confirmed in the dentatorubral-pallidoluysian atrophy transgenic mouse brain and culture cells expressing mutant atrophin-1. The results suggest that the interaction between NIIs and nuclear bodies may play a role in the pathogenesis of CAG repeat diseases.


Neuroreport | 2003

Inducible PC12 cell model of Huntington's disease shows toxicity and decreased histone acetylation.

Shuichi Igarashi; Hokuto Morita; Kyla M. Bennett; Yuji Tanaka; Simone Engelender; Matthew F. Peters; Jillian K. Cooper; Jonathan D. Wood; Akira Sawa; Christopher A. Ross

Huntingtons disease (HD) is an autosomal dominant neurodegenerative disorder caused by the abnormal expansion of a polyglutamine tract in the huntingtin protein. We have developed PC12 cell lines in which the expression of an N-terminal truncation of huntingtin (N63) with either wild type (23Q) or expanded polyglutamine (148Q) can be induced by the removal of doxycycline. Differentiated PC12 cells induced to express N63-148Q showed cellular toxicity reaching up to 50% at 6 days post-induction. Histone acetyltransferase (HAT) activity and global histone acetylation was significantly decreased in cells expressing truncated huntingtin with mutant but not normal huntingtin. These data suggest that altered chromatin modification via reduction in coactivator activity may cause neuronal transcriptional dysregulation and contribute to cellular toxicity.

Collaboration


Dive into the Shuichi Igarashi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keiko Tanaka

Kanazawa Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge