Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shuichi Tsuruoka is active.

Publication


Featured researches published by Shuichi Tsuruoka.


Clinical Pharmacology & Therapeutics | 2001

Different effects of St John's Wort on the pharmacokinetics of simvastatin and pravastatin

Koh-ichi Sugimoto; Masami Ohmori; Shuichi Tsuruoka; Kenta Nishiki; Atsuhiro Kawaguchi; Ken-ichi Harada; Masashi Arakawa; Koh-ichi Sakamoto; Mikio Masada; Miyamori I; Akio Fujimura

St Johns Wort, a widely used herbal product, is an inducer of CYP3A4 and it decreases blood concentrations of CYP3A4 substrates. The effects of St Johns Wort on the pharmacokinetics of 3‐hydroxy‐3‐methylglutaryl coenzyme A reductase inhibitors simvastatin (an inactive lactone pro‐drug) and pravastatin were determined in this study.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Claudin-2–deficient mice are defective in the leaky and cation-selective paracellular permeability properties of renal proximal tubules

Shigeaki Muto; Masaki Hata; Junichi Taniguchi; Shuichi Tsuruoka; Kazumasa Moriwaki; Mitinori Saitou; Kyoko Furuse; Hiroyuki Sasaki; Akio Fujimura; Masashi Imai; Eiji Kusano; Shoichiro Tsukita; Mikio Furuse

Claudin-2 is highly expressed in tight junctions of mouse renal proximal tubules, which possess a leaky epithelium whose unique permeability properties underlie their high rate of NaCl reabsorption. To investigate the role of claudin-2 in paracellular NaCl transport in this nephron segment, we generated knockout mice lacking claudin-2 (Cldn2−/−). The Cldn2−/− mice displayed normal appearance, activity, growth, and behavior. Light microscopy revealed no gross histological abnormalities in the Cldn2−/− kidney. Ultrathin section and freeze-fracture replica electron microscopy revealed that, similar to those of wild types, the proximal tubules of Cldn2−/− mice were characterized by poorly developed tight junctions with one or two continuous tight junction strands. In contrast, studies in isolated, perfused S2 segments of proximal tubules showed that net transepithelial reabsorption of Na+, Cl–, and water was significantly decreased in Cldn2−/− mice and that there was an increase in paracellular shunt resistance without affecting the apical or basolateral membrane resistances. Moreover, deletion of claudin-2 caused a loss of cation (Na+) selectivity and therefore relative anion (Cl–) selectivity in the proximal tubule paracellular pathway. With free access to water and food, fractional Na+ and Cl– excretions in Cldn2−/− mice were similar to those in wild types, but both were greater in Cldn2−/− mice after i.v. administration of 2% NaCl. We conclude that claudin-2 constitutes leaky and cation (Na+)–selective paracellular channels within tight junctions of mouse proximal tubules.


Journal of Clinical Investigation | 2002

Acid incubation reverses the polarity of intercalated cell transporters, an effect mediated by hensin

George J. Schwartz; Shuichi Tsuruoka; Soundarapandian Vijayakumar; Snezana Petrovic; Ayesa N. Mian; Qais Al-Awqati

Metabolic acidosis causes a reversal of polarity of HCO(3)(-) flux in the cortical collecting duct (CCD). In CCDs incubated in vitro in acid media, beta-intercalated (HCO(3)(-)-secreting) cells are remodeled to functionally resemble alpha-intercalated (H(+)-secreting) cells. A similar remodeling of beta-intercalated cells, in which the polarity of H(+) pumps and Cl(-)/HCO(3)(-) exchangers is reversed, occurs in cell culture and requires the deposition of polymerized hensin in the ECM. CCDs maintained 3 h at low pH ex vivo display a reversal of HCO(3)(-) flux that is quantitatively similar to an effect previously observed in acid-treated rabbits in vivo. We followed intracellular pH in the same beta-intercalated cells before and after acid incubation and found that apical Cl/HCO(3) exchange was abolished following acid incubation. Some cells also developed basolateral Cl(-)/HCO(3)(-) exchange, indicating a reversal of intercalated cell polarity. This adaptation required intact microtubules and microfilaments, as well as new protein synthesis, and was associated with decreased size of the apical surface of beta-intercalated cells. Addition of anti-hensin antibodies prevented the acid-induced changes in apical and basolateral Cl(-)/HCO(3)(-) exchange observed in the same cells and the corresponding suppression of HCO(3)(-) secretion. Acid loading also promoted hensin deposition in the ECM underneath adapting beta-intercalated cells. Hence, the adaptive conversion of beta-intercalated cells to alpha-intercalated cells during acid incubation depends upon ECM-associated hensin.


Biochemical and Biophysical Research Communications | 2002

Functional analysis of ABCA8, a new drug transporter.

Shuichi Tsuruoka; Kenichi Ishibashi; Hisashi Yamamoto; Michi Wakaumi; Makoto Suzuki; George J. Schwartz; Masashi Imai; Akio Fujimura

We examined the transport capacity in Xenopus laevis oocytes of human EST KIAA0822/ABCA8, a member of the ABC superfamily. Substrates of ABCC2/MRP-2 such as [14C]estradiol-beta-glucuronide, taurocholate, and LTC4, and of organic anion transporter (OAT), such as para-aminohippuric acid, ochratoxin-A, were significantly accumulated while tetraethylammonium and doxorubicin were not. The transport of [14C]estradiol-beta-glucuronide was ATP-dependent and K(m) and V(max) values of 30.4microM and 66.9pmol/h/egg, respectively, were estimated. The transport of [14C]estradiol-beta-glucuronide was inhibited by substrates/inhibitors of ABCC2/MRP-2, but not by those of the organic cation transporter and multidrug resistance protein (MDR)-1. KIAA0822/ABCA8 possesses two ATP-binding sites and fourteen transmembrane domains. Northern blot analysis revealed expression in most organs, especially in heart, skeletal muscle, and liver. Thus, ABCA8 is a new member of the xenobiotic transporter ABC-subfamily.


American Journal of Physiology-renal Physiology | 1999

NBC3 expression in rabbit collecting duct: colocalization with vacuolar H+-ATPase

Alexander Pushkin; Kay-Pong Yip; Imran B. Clark; Natalia Abuladze; Tae-Hwan Kwon; Shuichi Tsuruoka; George J. Schwartz; Søren Nielsen; Ira Kurtz

We have recently cloned and characterized a unique sodium bicarbonate cotransporter, NBC3, which unlike other members of the NBC family, is ethylisopropylamiloride (EIPA) inhibitable, DIDS insensitive, and electroneutral (A. Pushkin, N. Abuladze, I. Lee, D. Newman, J. Hwang, and I. Kurtz. J. Biol. Chem.274: 16569-16575, 1999). In the present study, a specific polyclonal antipeptide COOH-terminal antibody, NBC3-C1, was generated and used to determine the pattern of NBC3 protein expression in rabbit kidney. A major band of ∼200 kDa was detected on immunoblots of rabbit kidney. Immunocytochemistry of rabbit kidney frozen sections revealed specific staining of the apical membrane of intercalated cells in both the cortical and outer medullary collecting ducts. The pattern of NBC3 protein expression in the collecting duct was nearly identical to the same sections stained with an antibody against the vacuolar H+-ATPase 31-kDa subunit. In addition, the NBC3-C1 antibody coimmunoprecipitated the vacuolar H+-ATPase 31-kDa subunit. Functional studies in outer medullary collecting ducts (inner stripe) showed that type A intercalated cells have an apical Na+-dependent base transporter that is EIPA inhibitable and DIDS insensitive. The data suggest that NBC3 participates in H+/base transport in the collecting duct. The close association of NBC3 and the vacuolar H+-ATPase in type A intercalated cells suggests a potential structural/functional interaction between the two transporters.


European Journal of Pharmacology | 2008

Evaluation of the interaction between nonsteroidal anti-inflammatory drugs and methotrexate using human organic anion transporter 3-transfected cells

Akimitsu Maeda; Shuichi Tsuruoka; Yoshikatsu Kanai; Hitoshi Endou; Kazuyuki Saito; Etsuko Miyamoto; Akio Fujimura

Coadministration of methotrexate and nonsteroidal anti-inflammatory drugs (NSAIDs) can cause a pharmacokinetic interaction and a subsequent increase in blood methotrexate concentrations. methotrexate and most NSAIDs are excreted into urine via organic anion transporter 3 (OAT3). The purpose of this study was to evaluate NSAIDs that compete less with methotrexate by using the renal cell line stably expressing human OAT3 (S2-hOAT3) in vitro. We also confirmed the pharmacokinetic interaction of methotrexate with NSAIDs in vivo. [(3)H]methotrexate uptake into S2-hOAT3 cells was inhibited by most NSAIDs in a concentration-dependent manner, but aspirin, salicylate, tiaramide, and acetaminophen did not inhibit uptake. Inhibition by sulindac and pranoprofen was weaker at therapeutic drug concentrations. Furthermore, methotrexate concentrations in rat serum were significantly increased in a NSAID concentration-dependent manner when concentrations of coadministered NSAIDs increased above the Ki values obtained in the in vitro study. On the other hand, drugs that were not substrates of hOAT3, such as acetaminophen, did not interact with methotrexate. The magnitude of the pharmacokinetic interaction between methotrexate and NSAIDs was significantly correlated with results of the accumulation study in vitro and was not significantly correlated with a reduction of urinary creatinine excretion. In conclusion, methotrexate and most NSAIDs are substrates of hOAT3, and those drugs compete via hOAT3 in tubular secretion, the major mechanism of the interaction between methotrexate and NSAIDs. The accumulation study using S2-hOAT3 cells might be useful for screening of potential interactions between methotrexate and new NSAIDs in vivo.


Chronobiology International | 2005

Daily Rhythms of P‐glycoprotein Expression in Mice

Hitoshi Ando; Hayato Yanagihara; Koh-ichi Sugimoto; Yohei Hayashi; Shuichi Tsuruoka; Toshinari Takamura; Shuichi Kaneko; Akio Fujimura

Recent studies have shown the gene expression of several transporters to be circadian rhythmic. However, it remains to be elucidated whether the expression of P‐glycoprotein, which is involved in the transport of many medications, undergoes 24 h rhythmicity. To address this issue, we investigated daily profiles of P‐glycoprotein mRNA and protein levels in peripheral mouse tissues. In the liver and intestine, but not in the kidney, Abcb1a mRNA expression showed clear 24 h rhythmicity. On the other hand, Abcb1b and Abcb4, the other P‐glycoprotein genes, did not exhibit significant rhythmic expression in the studied tissues. In the intestine, levels of whole P‐glycoprotein also exhibited a daily rhythm, with a peak occurring in the latter half of the light phase and a trough at the onset of the light phase. Consistent with the day‐night change of P‐glycoprotein level, the ex vivo accumulation of digoxin, an Abcb1a P‐glycoprotein substrate, into the intestinal segments at the onset of dark phase was significantly lower than it was at the onset of the light phase. Thus, Abcb1a P‐glycoprotein expression, and apparently its function, are 24 h rhythmic at least in mouse intestine tissue. This circadian variation might be involved in various chronopharmacological phenomena.


Journal of Clinical Investigation | 1996

Adaptation of rabbit cortical collecting duct HCO3- transport to metabolic acidosis in vitro.

Shuichi Tsuruoka; George J. Schwartz

Net HCO3- transport in the rabbit kidney cortical collecting duct (CCD) is mediated by simultaneous H+ secretion and HCO3- secretion, most likely occurring in a alpha- and beta-intercalated cells (ICs), respectively. The polarity of net HCO3- transport is shifted from secretion to absorption after metabolic acidosis or acid incubation of the CCD. We investigated this adaptation by measuring net HCO3- flux before and after incubating CCDs 1 h at pH 6.8 followed by 2 h at pH 7.4. Acid incubation always reversed HCO3- flux from net secretion to absorption, whereas incubation for 3 h at pH 7.4 did not. Inhibition of alpha-IC function (bath CL- removal or DIDS, luminal bafilomycin) stimulated net HCO3- secretion by approximately 2 pmol/min per mm before acid incubation, whereas after incubation these agents inhibited net HCO3- absorption by approximately 5 pmol/min per mm. Inhibition of beta-IC function (luminal Cl- removal) inhibited HCO3- secretion by approximately 9 pmol/min per mm before incubation, whereas after incubation HCO3- absorption by only 3 pmol/min per mm. After acid incubation, luminal SCH28080 inhibited HCO3- absorption by only 5-15% vs the circa 90% inhibitory effect of bafilomycin. In outer CCDs, which contain fewer alpha-ICs than midcortical segments, the reversal in polarity of HCO3- flux was blunted after acid incubation. We conclude that the CCD adapts to low pH in vitro by downregulation HCO3- secretion in beta-ICs via decreased apical CL-/base exchang activity and upregulating HCO3- absorption in alpha-ICs via increased apical H+ -ATPase and basolateral CL-/base exchange activities. Whether or not there is a reversal of IC polarity or recruitment of gamma-ICs in this adaptation remains to be established.


Clinical and Experimental Pharmacology and Physiology | 2001

Effect Of Enalapril On Diabetic Nephropathy In Oletf Rats: The Role Of An Anti‐Oxidative Action In Its Protective Properties

Koh-ichi Sugimoto; Shuichi Tsuruoka; Akio Fujimura

1. We have evaluated the effects of the angiotensin‐converting enzyme inhibitor enalapril on renal function and oxidative status in the kidney of Otsuka Long‐Evans Tokushima Fatty (OLETF) rats, an animal model of spontaneous onset of type 2 diabetes mellitus.


Clinical Pharmacology & Therapeutics | 2006

Severe arrhythmia as a result of the interaction of cetirizine and pilsicainide in a patient with renal insufficiency: first case presentation showing competition for excretion via renal multidrug resistance protein 1 and organic cation transporter 2.

Shuichi Tsuruoka; Takashi Ioka; Michi Wakaumi; Koh-ichi Sakamoto; Hitoshi Ookami; Akio Fujimura

A 72‐year‐old woman with renal insufficiency who was taking oral pilsicainide (150 mg/d) complained of feeling faint 3 days after she was prescribed oral cetirizine (20 mg/d). She was found to have a wide QRS wave with bradycardia. Her symptoms were relieved by termination of pilsicainide. The plasma concentrations of both drugs were significantly increased during the coadministration, and the cetirizine concentration decreased on cessation of pilsicainide despite the fact that treatment with cetirizine was continued, which suggested that the fainting was induced by the pharmacokinetic drug interaction. A pharmacokinetic study in 6 healthy male volunteers after a single dose of either cetirizine (20 mg) or pilsicainide (50 mg), or both, found that the renal clearance of each drug was significantly decreased by the coadministration of the drugs (from 475 ± 101 mL/min to 279 ± 117 mL/min for pilsicainide and from 189 ± 37 mL/min to 118 ± 28 mL/min for cetirizine; P = .008 and .009, respectively). In vitro studies using Xenopus oocytes with microinjected human organic cation transporter 2 and renal cells transfected with human multidrug resistance protein 1 revealed that the transport of the substrates of these transporters was inhibited by either cetirizine or pilsicainide. Thus elevated concentrations of these drugs as a result of a pharmacokinetic drug‐drug interaction via either human multidrug resistance protein 1 or human organic cation transporter 2 (or both) in the renal tubular cells might have caused the arrhythmia in our patient. Although cetirizine has less potential for causing arrhythmias than other histamine 1 blockers, such an interaction should be considered, especially in patients with renal insufficiency who are receiving pilsicainide.

Collaboration


Dive into the Shuichi Tsuruoka's collaboration.

Top Co-Authors

Avatar

Akio Fujimura

Jichi Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hitoshi Ando

Jichi Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akiko Mii

Nippon Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Masami Ohmori

Jichi Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge