Shuichiro Murakami
Kobe University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shuichiro Murakami.
Applied and Environmental Microbiology | 2007
Shinji Takenaka; Takashi Tonoki; Kazuya Taira; Shuichiro Murakami; Kenji Aoki
ABSTRACT Pseudomonas sp. strain 7-6, isolated from active sludge obtained from a wastewater facility, utilized a quaternary ammonium surfactant, n-dodecyltrimethylammonium chloride (DTAC), as its sole carbon, nitrogen, and energy source. When initially grown in the presence of 10 mM DTAC medium, the isolate was unable to degrade DTAC. The strain was cultivated in gradually increasing concentrations of the surfactant until continuous exposure led to high tolerance and biodegradation of the compound. Based on the identification of five metabolites by gas chromatography-mass spectrometry analysis, two possible pathways for DTAC metabolism were proposed. In pathway 1, DTAC is converted to lauric acid via n-dodecanal with the release of trimethylamine; in pathway 2, DTAC is converted to lauric acid via n-dodecyldimethylamine and then n-dodecanal with the release of dimethylamine. Among the identified metabolites, the strain precultivated on DTAC medium could utilize n-dodecanal and lauric acid as sole carbon sources and trimethylamine and dimethylamine as sole nitrogen sources, but it could not efficiently utilize n-dodecyldimethylamine. These results indicated pathway 1 is the main pathway for the degradation of DTAC.
Bioscience, Biotechnology, and Biochemistry | 2006
Endang Setyorini; Shinji Takenaka; Shuichiro Murakami; Kenji Aoki
Bacillus subtilis strain FP-133, isolated from a fermented fish paste, synthesized two novel halotolerant extracellular proteases (expro-I and expro-II), showing activity and stability at concentrations of 0–20% (w/v) NaCl. Each protease was purified to homogeneity and characterized. The purified expro-I was a non-alkaline serine protease with an optimum pH of 7.5, although most serine proteases from Bacillus strains act at the alkaline side. The molecular mass of expro-I was 29 kDa. The purified expro-II was a metalloprotease with a molecular mass of 34 kDa. It was activated by Fe2+, which has never been reported as a bacterial protease activator. At a concentration of 7.5% (w/v) NaCl, both proteases preferred animal proteins to vegetable proteins as natural substrates. In addition, under saline conditions, expro-I and II showed high catalytic activity toward gelatin and casein respectively.
Applied and Environmental Microbiology | 2003
Shinji Takenaka; Susumu Okugawa; Maho Kadowaki; Shuichiro Murakami; Kenji Aoki
ABSTRACT Burkholderia sp. strain AK-5 utilized 4-aminophenol as the sole carbon, nitrogen, and energy source. A pathway for the metabolism of 4-aminophenol in strain AK-5 was proposed based on the identification of three key metabolites by gas chromatography-mass spectrometry analysis. Strain AK-5 converted 4-aminophenol to 1,2,4-trihydroxybenzene via 1,4-benzenediol. 1,2,4-Trihydroxybenzene 1,2-dioxygenase cleaved the benzene ring of 1,2,4-trihydroxybenzene to form maleylacetic acid. The enzyme showed a high dioxygenase activity only for 1,2,4-trihydroxybenzene, with Km and Vmax values of 9.6 μM and 6.8 μmol min−1 mg of protein−1, respectively.
Gene | 1997
Shuichiro Murakami; Noriko Kodama; Ryu Shinke; Kenji Aoki
Gram+ aniline-assimilating Rhodococcus erythropolis AN-13 (AN-13) produces catechol 1,2-dioxygenase (C12O) showing high enzymatic activities for 3- and 4-methylcatechols [Aoki et al. (1984) Agric. Biol. Chem. 48, 2087-2095]. A 3.0 kb Sau3AI fragment carrying a gene encoding C12O(catA) was cloned by selection of transformants showing C12O activity from a gene library of AN-13. Furthermore, we specified a 1.6 kb SalI fragment containing catA from the Sau3AI fragment by subcloning. Sequence analysis revealed that the 1.6 kb SalI fragment carried a 855 bp open reading frame (ORF) encoding the entire AN-13 catA, preceded by a potential ribosome binding site (RBS). From comparison of the deduced amino acid (aa) sequence of C12O from AN-13 with other C12O reported previously, it was found that the AN-13 enzyme shares 56.0% aa sequence identity with C12o from Arthrobacter sp. mA3 (mA3) [Eck and Belter (1991) Gene 123, 87-92] compared with less than 36.4% aa sequence identities with others. In conclusion, we classified all C12O including the AN-13 enzyme into three subfamilies on the basis of similarity of aa sequences, numbers of aa residues, and substrate specificity.
Gene | 1999
Shuichiro Murakami; Atsushi Takashima; Junji Takemoto; Shinji Takenaka; Ryu Shinke; Kenji Aoki
The aniline-assimilating bacterium Frateuria species ANA-18 produced two catechol 1,2-dioxygenases, CD I and CD II, and two muconate cycloisomerases, MC I and MC II. The catA genes catA1 and catA2 encoding CD I and CD II, respectively, were cloned from a gene library of this bacterium. The catA1 gene was clustered with catB1 encoding MC I, catC1 encoding muconolactone isomerase (MI), catD encoding beta-ketoadipate enol-lactone hydrolase (ELH), and ORFR1 encoding a putative LysR-type regulator. The organization of these genes was ORFR1catB1C1D. The catA2 gene also constructed a gene cluster involving catB2 encoding MC II, catC2 encoding MI, and ORFR2 encoding a putative LysR-type regulator with the alignment of ORFR2catB2A2C2. The intergenic regions of ORFR1-catB1 and ORFR2-catB2 contained homologous sequences with the catR-catB intergenic region containing a repression binding site and activation binding site of CatR in Pseudomonas putida. These findings suggest that the two cat clusters were regulated independently in their expression. When a product of cloned catD was added to a reaction mixture containing beta-ketoadipate enol-lactone, beta-ketoadipate was produced. This observation showed that the cloned catD encoded ELH and was expressed in Escherichia coli. We found that Frateuria sp. ANA-18 had a large plasmid with a molecular size more than 100kb. Polymerase chain reaction amplifying partial catA genes and Southern hybridization analyses with probes containing catA genes were conducted, to examine the localization of the two catA genes. We concluded that the catA1 and catA2 genes were located on the chromosomal and large plasmid DNAs, respectively, in Frateuria sp. ANA-18.
Biochemical Journal | 2006
Eitaro Matsumura; Masashi Sakai; Katsuaki Hayashi; Shuichiro Murakami; Shinji Takenaka; Kenji Aoki
The aniline-assimilating bacterium Rhodococcus sp. AN-22 was found to constitutively synthesize CatB (cis,cis-muconate cycloisomerase) and CatC (muconolactone isomerase) in its cells growing on non-aromatic substrates, in addition to the previously reported CatA (catechol 1,2-dioxygenase). The bacterium maintained the specific activity of the three enzymes at an almost equal level during cultivation on succinate. CatB and CatC were purified to homogeneity and characterized. CatB was a monomer with a molecular mass of 44 kDa. The enzyme was activated by Mn2+, Co2+ and Mg2+. Native CatC was a homo-octamer with a molecular mass of 100 kDa. The enzyme was stable between pH 7.0 and 10.5 and was resistant to heating up to 90 degrees C. Genes coding for CatA, CatB and CatC were cloned and named catA, catB and catC respectively. The catABC genes were transcribed as one operon. The deduced amino acid sequences of CatA, CatB and CatC showed high identities with those from other Gram-positive micro-organisms. A regulator gene such as catR encoding a regulatory protein was not observed around the cat gene cluster of Rhodococcus sp. AN-22, but a possible relic of catR was found in the upstream region of catA. Reverse transcriptase-PCR and primer extension analyses showed that the transcriptional start site of the cat gene cluster was located 891 bp upstream of the catA initiation codon in the AN-22 strain growing on both aniline and succinate. Based on these data, we concluded that the bacterium constitutively transcribed the catABC genes and translated its mRNA into CatA, CatB and CatC.
Archives of Microbiology | 2000
Shinji Takenaka; Shuichiro Murakami; Young-Ju Kim; Kenji Aoki
Abstract. A 13.9-kb region, which contained the 2-aminophenol 1,6-dioxygenase genes (amnBA) reported before, was cloned from the 2-aminophenol-assimilating bacterium Pseudomonas sp. AP-3. The complete nucleotide sequence of this region was determined and six genes were found downstream of amnBA. The eight genes together were designated amnBACFEDHG. Each gene was similar to the corresponding gene operating in the meta-cleavage pathway, except for amnB, amnA, and amnD. The four 2-aminophenol-metabolizing enzymes, 2-aminomuconic 6-semialdehyde dehydrogenase, 2-aminomuconate deaminase, 4-oxalocrotonate decarboxylase, and 2-oxopent-4-enoate hydratase, were purified and characterized. NH2-terminal amino acid sequences of each purified enzyme agreed with those deduced from amnC, amnF, amnE, and amnD, respectively. These genes were therefore assigned as the genes encoding these respective proteins. The tight clustering of the amn genes, which were all transcribed in the same direction, raised the possibility that these genes formed a single operon. The organization of the amn genes was entirely different from that of the atd, dmp, and xyl genes reported in the meta-cleavage pathway, although these latter genes clustered similarly.
Bioscience, Biotechnology, and Biochemistry | 2007
Shuichiro Murakami; Haruka Nishimoto; Yosuke Toyama; Etsuko Shimamoto; Shinji Takenaka; Jarunee Kaulpiboon; Manchumas Hengsakul Prousoontorn; Tipaporn Limpaseni; Piamsook Pongsawasdi; Kenji Aoki
A newly isolated strain, 38C-2-1, produced alkaline and thermotolerant α-amylases and was identified as Bacillus halodurans. The enzymes were purified to homogeneity and named α-amylase I and II. These showed molecular masses of 105 and 75 kDa respectively and showed maximal activities at 50–60 °C and pH 10–11, and 42 and 38% relative activities at 30 °C. These results indicate that the enzymes are thermotolerant. The enzyme activity was not inhibited by a surfactant or a bleaching reagent used in detergents. A gene encoding α-amylase I was cloned and named amyI. Production of AmyI with a signal peptide repressed the growth of an Escherichia coli transformant. When enzyme production was induced by the addition of isopropyl β-D(−)-thiogalactopyranoside in the late exponential growth phase, the highest enzyme yield was observed. It was 45-fold that of the parent strain 38C-2-1.
Bioscience, Biotechnology, and Biochemistry | 1999
Machiko Tanaka; Shuichiro Murakami; Ryu Shinke; Kenji Aoki
Three species, Gluconobacter cerinus, G. asaii, and G. frateurii are reported to show lower G+C contents than G. oxydans. Isolate 145 also showed a similar G+C content to those of the three species. We try to reclassify the three species. G. frateurii including a type strain, isolate 145, G. cerinus IFO 3262, 3263, 3269, and G. asaii IFO 3265 formed acid from D-arabitol, ribitol, and L-arabitol. DNAs from G. cerinus IFO 3262, 3263, 3269, and G. asaii IFO 3265 showed 100-53% sequence similarity with that from the type strain of G. frateurii, but showed 31-39% and 34-42% similarity with those from the type strains of G. cerinus and G. asaii, respectively. On the basis of these observations, G. cerinus IFO 3262, 3263, 3269 and G. asaii IFO 3265 were identified as G. frateurii. The type strains of G. cerinus and G. asaii formed acid from D-arabitol, but did not form acid from ribitol and L-arabitol. DNAs from the type strains of G. cerinus and G. asaii showed species-level similarity (95 and 88%) with each other. From these results, we concluded that G. asaii is conspesific and synonymous with G. cerinus.
Journal of Bioscience and Bioengineering | 2004
Eitaro Matsumura; Susumu Ooi; Shuichiro Murakami; Shinji Takenaka; Kenji Aoki
A catechol 1,2-dioxygenase (CD) was found, which was synthesized constitutively in the aniline-assimilating bacterium Rhodococcus sp. AN-22 grown on a medium without aniline, as well as on aniline medium. The bacterium synthesized CD in its cells grown on all the 21 non-aromatic substrates examined, including four natural media such as meat and yeast extracts, one sugar, six organic acids, and 10 amino acids as carbon, energy, and nitrogen sources. When the bacterium was incubated on a medium with D-glucose, L-malate, isoleucine, leucine, etc., it synthesized more CD than that in cells grown on aniline. Two CDs, which were prepared from cells grown on aniline and L-malate, were purified separately to homogeneity and characterized. The two enzymes were apparently identical in molecular and catalytic properties including molecular mass, optimal pH, stability to heating, and substrate specificity for catechol analogues. However, they differed in the substrate specificity and resistance to sulfhydryl and chelating agents from the inducible CDs produced by other aniline-assimilating bacteria reported previously.