Shuifang Zhu
China Agricultural University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shuifang Zhu.
PLOS ONE | 2012
Jie Lu; Zhixin Du; Jun Kong; Ling-Na Chen; Yanhong Qiu; Guifen Li; Xiao-Hua Meng; Shuifang Zhu
Virus infection of plants may induce a variety of disease symptoms. However, little is known about the molecular mechanism of systemic symptom development in infected plants. Here we performed the first next-generation sequencing study to identify gene expression changes associated with disease development in tobacco plants (Nicotiana tabacum cv. Xanthi nc) induced by infection with the M strain of Cucumber mosaic virus (M-CMV). Analysis of the tobacco transcriptome by RNA-Seq identified 95,916 unigenes, 34,408 of which were new transcripts by database searches. Deep sequencing was subsequently used to compare the digital gene expression (DGE) profiles of the healthy plants with the infected plants at six sequential disease development stages, including vein clearing, mosaic, severe chlorosis, partial and complete recovery, and secondary mosaic. Thousands of differentially expressed genes were identified, and KEGG pathway analysis of these genes suggested that many biological processes, such as photosynthesis, pigment metabolism and plant-pathogen interaction, were involved in systemic symptom development. Our systematic analysis provides comprehensive transcriptomic information regarding systemic symptom development in virus-infected plants. This information will help further our understanding of the detailed mechanisms of plant responses to viral infection.
Scientific Reports | 2015
Wei Fu; Pengyu Zhu; Chenguang Wang; Kunlun Huang; Zhixin Du; Wenying Tian; Qin Wang; Huiyu Wang; Wentao Xu; Shuifang Zhu
Digital PCR has developed rapidly since it was first reported in the 1990s. It was recently reported that an improved method facilitated the detection of genetically modified organisms (GMOs). However, to use this improved method, the samples must be pretreated, which could introduce inaccuracy into the results. In our study, we explored a pretreatment-free digital PCR detection method for the screening for GMOs. We chose the CaMV35s promoter and the NOS terminator as the templates in our assay. To determine the specificity of our method, 9 events of GMOs were collected, including MON810, MON863, TC1507, MIR604, MIR162, GA21, T25, NK603 and Bt176. Moreover, the sensitivity, intra-laboratory and inter-laboratory reproducibility of our detection method were assessed. The results showed that the limit of detection of our method was 0.1%, which was lower than the labeling threshold level of the EU. The specificity and stability among the 9 events were consistent, respectively. The intra-laboratory and inter-laboratory reproducibility were both good. Finally, the perfect fitness for the detection of eight double-blind samples indicated the good practicability of our method. In conclusion, the method in our study would allow more sensitive, specific and stable screening detection of the GMO content of international trading products.
Scientific Reports | 2018
Yanhong Qiu; Yongjiang Zhang; Chaonan Wang; Rong Lei; Yupin Wu; Xinshi Li; Shuifang Zhu
Cucumber mosaic virus (CMV) infection could induce mosaic symptoms on a wide-range of host plants. However, there is still limited information regarding the molecular mechanism underlying the development of the symptoms. In this study, the coat protein (CP) was confirmed as the symptom determinant by exchanging the CP between a chlorosis inducing CMV-M strain and a green-mosaic inducing CMV-Q strain. A yeast two-hybrid analysis and bimolecular fluorescence complementation revealed that the chloroplast ferredoxin I (Fd I) protein interacted with the CP of CMV-M both in vitro and in vivo, but not with the CP of CMV-Q. The severity of chlorosis was directly related to the expression of Fd1, that was down-regulated in CMV-M but not in CMV-Q. Moreover, the silencing of Fd I induced chlorosis symptoms that were similar to those elicited by CMV-M. Subsequent analyses indicated that the CP of CMV-M interacted with the precursor of Fd I in the cytoplasm and disrupted the transport of Fd I into chloroplasts, leading to the suppression of Fd I functions during a viral infection. Collectively, our findings accentuate that the interaction between the CP of CMV and Fd I is the primary determinant for the induction of chlorosis in tobacco.
Archives of Virology | 2017
Yanhong Qiu; Yongjiang Zhang; Fan Hu; Shuifang Zhu
This study characterized the viral small interfering RNAs (vsiRNAs) from Nicotiana tabacum cv. Samsun infected with a cucumber mosaic virus (CMV) 2b-deficient mutant. Most vsiRNAs were 21 -22 nucleotides in length and the 5′-terminal ends were dominated by A and U, respectively. The observed vsiRNAs were heterogeneously distributed throughout the CMV genome; however, most of the vsiRNAs were derived from sense strands, as opposed to antisense strands. These results demonstrate the conserved and specific function of Dicer-like (DCL), Argonaute (AGO) and RNA-dependent RNA polymerase (RDR) proteins in tobacco. Finally, it was revealed that vsiRNAs target abundant host genes, indicating complex roles for CMV vsiRNAs during the development of symptoms.
Analytica Chimica Acta | 2016
Pengyu Zhu; Wei Fu; Chenguang Wang; Zhixin Du; Kunlun Huang; Shuifang Zhu; Wentao Xu
The possibility of the absolute quantitation of GMO events by digital PCR was recently reported. However, most absolute quantitation methods based on the digital PCR required pretreatment steps. Meanwhile, singleplex detection could not meet the demand of the absolute quantitation of GMO events that is based on the ratio of foreign fragments and reference genes. Thus, to promote the absolute quantitative detection of different GMO events by digital PCR, we developed a quantitative detection method based on duplex digital PCR without pretreatment. Moreover, we tested 7 GMO events in our study to evaluate the fitness of our method. The optimized combination of foreign and reference primers, limit of quantitation (LOQ), limit of detection (LOD) and specificity were validated. The results showed that the LOQ of our method for different GMO events was 0.5%, while the LOD is 0.1%. Additionally, we found that duplex digital PCR could achieve the detection results with lower RSD compared with singleplex digital PCR. In summary, the duplex digital PCR detection system is a simple and stable way to achieve the absolute quantitation of different GMO events. Moreover, the LOQ and LOD indicated that this method is suitable for the daily detection and quantitation of GMO events.
Analytical and Bioanalytical Chemistry | 2017
Wei Fu; Pengyu Zhu; Shuang Wei; Du Zhixin; Chenguang Wang; Xiyang Wu; Feiwu Li; Shuifang Zhu
AbstractAmong all of the high-throughput detection methods, PCR-based methodologies are regarded as the most cost-efficient and feasible methodologies compared with the next-generation sequencing or ChIP-based methods. However, the PCR-based methods can only achieve multiplex detection up to 15-plex due to limitations imposed by the multiplex primer interactions. The detection throughput cannot meet the demands of high-throughput detection, such as SNP or gene expression analysis. Therefore, in our study, we have developed a new high-throughput PCR-based detection method, multiplex enrichment quantitative PCR (ME-qPCR), which is a combination of qPCR and nested PCR. The GMO content detection results in our study showed that ME-qPCR could achieve high-throughput detection up to 26-plex. Compared to the original qPCR, the Ct values of ME-qPCR were lower for the same group, which showed that ME-qPCR sensitivity is higher than the original qPCR. The absolute limit of detection for ME-qPCR could achieve levels as low as a single copy of the plant genome. Moreover, the specificity results showed that no cross-amplification occurred for irrelevant GMO events. After evaluation of all of the parameters, a practical evaluation was performed with different foods. The more stable amplification results, compared to qPCR, showed that ME-qPCR was suitable for GMO detection in foods. In conclusion, ME-qPCR achieved sensitive, high-throughput GMO detection in complex substrates, such as crops or food samples. In the future, ME-qPCR-based GMO content identification may positively impact SNP analysis or multiplex gene expression of food or agricultural samples. Graphical abstractFor the first-step amplification, four primers (A, B, C, and D) have been added into the reaction volume. In this manner, four kinds of amplicons have been generated. All of these four amplicons could be regarded as the target of second-step PCR. For the second-step amplification, three parallels have been taken for the final evaluation. After the second evaluation, the final amplification curves and melting curves have been achieved
Analytica Chimica Acta | 2017
Chenguang Wang; Nan Cheng; Longjiao Zhu; Yuancong Xu; Kunlun Huang; Pengyu Zhu; Shuifang Zhu; Wei Fu; Wentao Xu
A colorimetric biosensor for DNA screening was designed based on the conformational changes of the horseradish peroxidase (HRP)-mimicking DNAzyme. The scheme of DNA biosensing was designed based on the base pairing of DNAzyme sequence to inhibit the formation of HRP-mimicking hemin/G-quadruplex structures in the process of amplification. DNA could be amplified via the universal primer multiplex polymerase chain reaction (UP-M-PCR) and innovatively detected as color disappear in the reaction visible to the naked eye. The input of key factors and the output of optical characteristics in the reaction inspired the development of an OR logic gate operation for DNA detection. This biosensor overcomes self-inhibition and amplification disparity with the help of UP-M-PCR, thereby exhibiting high specificity and high-throughput without the requirement of gel analysis work. This biosensing system also presented 1% sensitivity and approximately 180 copy numbers in triplicate. The biosensor was used to screen elements from genetically modified organisms (GMOs) and covered more than 90% of all globally authorized events in the world. The designed colorimetric biosensor is a rapid, portable and versatile tool for nucleic acids detection and diagnosis in the field.
Viruses | 2018
Chenguang Wang; Chaonan Wang; Wenjie Xu; Jingze Zou; Yanhong Qiu; Jun Kong; Yunshu Yang; Boyang Zhang; Shuifang Zhu
Plants have evolved multiple mechanisms to respond to viral infection. These responses have been studied in detail at the level of host immune response and antiviral RNA silencing (RNAi). However, the possibility of epigenetic reprogramming has not been thoroughly investigated. Here, we identified the role of DNA methylation during viral infection and performed reduced representation bisulfite sequencing (RRBS) on tissues of Cucumber mosaic virus (CMV)-infected Nicotiana tabacum at various developmental stages. Differential methylated regions are enriched with CHH sequence contexts, 80% of which are located on the gene body to regulate gene expression in a temporal style. The methylated genes depressed by methyltransferase inhibition largely overlapped with methylated genes in response to viral invasion. Activation in the argonaute protein and depression in methyl donor synthase revealed the important role of dynamic methylation changes in modulating viral clearance and resistance signaling. Methylation-expression relationships were found to be required for the immune response and cellular components are necessary for the proper defense response to infection and symptom recovery.
Scientific Reports | 2018
Fan Jiang; Liang Liang; Zhihong Li; Yanxue Yu; Jun Wang; Yuping Wu; Shuifang Zhu
The genera Anastrepha, Bactrocera, Ceratitis, Dacus and Rhagoletis in the family Tephritidae order Diptera are economically important, worldwide distributed and cause damage to a large number of commercially produced fruits and vegetables. China had regulated these five genera as quarantine pests, including the species Carpomya vesuviana. An accurate molecular method not depending on morphology able to detect all the quarantine fruit flies simultaneously is required for quarantine monitoring. This study contributes a comparative analysis of 146 mitochondrial genomes of Diptera species and found variable sites at the mt DNA cox2 gene only conserved in economically important fruit flies species. Degenerate primers (TephFdeg/TephR) were designed specific for the economically important fruit flies. A 603 bp fragment was amplified after testing each of the 40 selected representative species belonging to each economically important Tephritid genera, no diagnostic fragments were detected/amplified in any of the other Tephritidae and Diptera species examined. PCR sensitivity assays demonstrated the limit of detection of targeted DNA was 0.1 ng/μl. This work contributes an innovative approach for detecting all reported economically important fruit flies in a single-step PCR specific for reported fruit fly species of quarantine concern in China.
RSC Advances | 2018
Fan Hu; Rong Lei; Yu-Fang Deng; Jun Wang; Guifen Li; Chaonan Wang; Zhi-Hong Li; Shuifang Zhu
To control plant viruses, viral RNA silencing suppressors are important drug targets due to their key roles in interfering antiviral RNA silencing. Here we have presented a strategy, combining virtual and experimental screening, to discover the inhibitors of viral suppressor. By docking 157 026 compounds from a natural product library into P19 model, eighteen candidate compounds were selected. Candidates VS2, VS12, VS14 and VS15 displayed strong binding ability to P19 in the surface plasmon resonance imaging assay with KD values of 136.2, 111.6, 81.2 and 124.5 nM, respectively. Then the inhibition activities of these inhibitors on the association between P19 and siRNA were also affirmed by electrophoretic mobility shift assay. Moreover, the antiviral effects on plants showed that compounds VS14 and VS15 both exhibited antiviral activities against Tomato bushy stunt virus (TBSV) in vivo with inhibition rates of 32.35% and 16.61% in 11 dpi, respectively. This strategy would be a powerful tool for the discovery of novel antiviral agents and provide new insights into the control of plant viruses.