Shuko Yokoyama
Osaka University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shuko Yokoyama.
Applied Physics Letters | 2006
Takeshi Yasui; Yasuhiro Kabetani; Eisuke Saneyoshi; Shuko Yokoyama; Tsutomu Araki
We report a terahertz spectroscopy technique based on a stable terahertz frequency comb from a photoconductive terahertz emitter driven by a stabilized femtosecond laser. To this end, a photocurrent frequency comb is induced in a photoconductive terahertz detector by instantaneous photogating with another detuned femtosecond laser and is applied to read out the terahertz frequency comb. The detailed structure of the terahertz frequency comb was clearly observed with frequency accuracy of 2.5×10−7 and resolution of 81.8MHz using multifrequency-heterodyning photoconductive detection, which in turn is caused by the slightly mismatched frequency spacing between terahertz and photocurrent frequency combs.
Optics Express | 2008
Shuko Yokoyama; Ryotaro Nakamura; Masaki Nose; Tsutomu Araki; Takeshi Yasui
Precision frequency measurements of terahertz (THz) waves are required to establish metrology in the THz spectral region. However, frequency measurement techniques in this region are immature. We propose a THz spectrum analyzer to measure the absolute frequency and spectral shape of continuous-wave THz waves. Based on a stable frequency comb generated in a photoconductive antenna, the absolute frequency of a sub- THz test source was determined at a precision of 2.8 x 10(-11). Furthermore, the spectral bandwidth of the THz spectrum analyzer can be extended over 1 THz, as demonstrated by measurement of a THz test source. This spectrum analyzer has the potential to become a powerful tool for THz frequency metrology.
IEEE Journal of Selected Topics in Quantum Electronics | 2011
Takeshi Yasui; Shuko Yokoyama; Hajime Inaba; Kaoru Minoshima; Tadao Nagatsuma; Tsutomu Araki
Two techniques for terahertz (THz) frequency metrology based on frequency comb, namely, a THz-comb-referenced spectrum analyzer and a continuously tunable, single-frequency continuous-wave (CW)-THz generator, are reviewed. Since the frequency comb enables to coherently link the frequency among microwave, optical, and THz regions, it is possible to establish the THz frequency metrology traceable to time of the SI base units. Using a THz-comb-referenced spectrum analyzer based on a stable THz comb generated in a photoconductive antenna for THz detection, the absolute frequency of CW test sources in the sub-THz and THz regions was determined at a precision of 10-11. Furthermore, a continuously tunable, single-frequency CW-THz generator was demonstrated around 120 GHz by photomixing of an accurately tunable CW laser and a tightly fixed CW laser in the optical frequency region, phase locked to two independent optical combs. The combination of the CW-THz generator with the THz-comb-referenced spectrum analyzer will open the door for establishment of frequency metrology in the THz region.
Optics Express | 2009
Takeshi Yasui; Ryotaro Nakamura; Kohji Kawamoto; Atsushi Ihara; Yoshihide Fujimoto; Shuko Yokoyama; Hajime Inaba; Kaoru Minoshima; Tadao Nagatsuma; Tsutomu Araki
We propose a fiber-based, terahertz-comb-referenced spectrum analyzer which has the advantages of being a portable, alignment-free, robust, and flexible apparatus suitable for practical use. To this end, we constructed a 1550-nm mode-locked Er-doped fiber laser whose mode-locked frequency was stabilized precisely by referring to a rubidium frequency standard, and used it to generate a highly stable terahertz (THz) frequency comb in a photoconductive antenna or an electro-optic crystal. By standardizing the THz comb, we determined the frequency accuracy of an active-frequency-multiplier-chain (AFMC) source to be 2.4 x 10(-11). Furthermore, the potential of the THz spectrum analyzer was effectively demonstrated by real-time monitoring of the spectral behavior of the AFMC source and a photomixing source of two free-running CW lasers at adjacent wavelengths.
Optics Letters | 2010
Takeshi Yasui; Masaki Nose; Atsushi Ihara; Kohji Kawamoto; Shuko Yokoyama; Hajime Inaba; Kaoru Minoshima; Tsutomu Araki
We constructed a fiber-based, hybrid terahertz (THz) spectrometer having two working modes, asynchronous-optical-sampling THz time-domain spectroscopy (AOS-THz-TDS) and multiple-frequency-heterodyning THz comb spectroscopy (MFH-THz-CS), by use of dual fiber-laser-based frequency combs. A spectral range of 2THz and dynamic range of 100 was achieved at the single sweep measurement of 200ms in the AOS-THz-TDS mode, whereas the detailed structure of the THz frequency comb was clearly observed in the MFH-THz-CS mode. The spectrometer features compactness, robustness, flexibility, and cost effectiveness, in addition to high spectral resolution in rapid data acquisition, and has the potential to become a powerful tool for practical applications.
Optics Express | 2009
Shuko Yokoyama; Toshiyuki Yokoyama; Yuki Hagihara; Tsutomu Araki; Takeshi Yasui
The authors proposed a novel method of phase measurement of terahertz intermode beat in optical frequency comb, to enhance the dynamic-range of distance meter. Utilizing nonlinear optical process, distance measurement with 130 GHz equivalent frequency was realized.
Scientific Reports | 2015
Yi-Da Hsieh; Yuki Iyonaga; Yoshiyuki Sakaguchi; Shuko Yokoyama; Hajime Inaba; Kaoru Minoshima; Francis Hindle; Tsutomu Araki; Takeshi Yasui
Optical frequency combs are innovative tools for broadband spectroscopy because a series of comb modes can serve as frequency markers that are traceable to a microwave frequency standard. However, a mode distribution that is too discrete limits the spectral sampling interval to the mode frequency spacing even though individual mode linewidth is sufficiently narrow. Here, using a combination of a spectral interleaving and dual-comb spectroscopy in the terahertz (THz) region, we achieved a spectral sampling interval equal to the mode linewidth rather than the mode spacing. The spectrally interleaved THz comb was realized by sweeping the laser repetition frequency and interleaving additional frequency marks. In low-pressure gas spectroscopy, we achieved an improved spectral sampling density of 2.5 MHz and enhanced spectral accuracy of 8.39 × 10−7 in the THz region. The proposed method is a powerful tool for simultaneously achieving high resolution, high accuracy, and broad spectral coverage in THz spectroscopy.We demonstrated combination of gapless terahertz (THz) comb with dual-comb spectroscopy, namely gapless dual-THz-comb spectroscopy, to achieve the spectral resolution equal to width of the THz comb tooth. The gapless THz comb was realized by interpolating frequency gaps between the comb teeth with sweeping of a laser mode-locked frequency. The demonstration of low-pressure gas spectroscopy with gapless dual-THz-comb spectroscopy clearly indicated that the spectral resolution was decreased down to 2.5-MHz width of the comb tooth and the spectral accuracy was enhanced to 10-6 within the spectral range of 1THz. The proposed method will be a powerful tool to simultaneously achieve high resolution, high accuracy, and broad spectral coverage in THz spectroscopy.
Measurement Science and Technology | 1999
Shuko Yokoyama; Jun Ohnishi; Shigeo Iwasaki; Katuo Seta; Hirokazu Matsumoto; Norihito Suzuki
We present here a new method for real-time absolute-distance measurement. It is based on a two-wavelength superheterodyne interferometer. It is performed by simultaneous measurement of its synthetic wavelength and one of two wavelengths. The phase of one of two wavelengths is electrically separated from the synthetic one, thus maintaining the resolution of a one-wavelength heterodyne interferometer. Two He-Ne lasers operating at 1 = 633 nm and 2 = 612 nm are incorporated into the measuring system, as two wavelength sources, resulting in the synthetic wavelength of s = 18.4 µm. Thus, the proposed system has a range of 9.2 µm with nanometre resolution.
IEEE Transactions on Terahertz Science and Technology | 2013
Yi-Da Hsieh; Yuki Iyonaga; Yoshiyuki Sakaguchi; Shuko Yokoyama; Hajime Inaba; Kaoru Minoshima; Francis Hindle; Yoshinori Takahashi; Masashi Yoshimura; Yusuke Mori; Tsutomu Araki; Takeshi Yasui
The fine-structured spectrum of a terahertz (THz) frequency comb has been observed using asynchronous-optical-sampling THz time-domain spectroscopy with an extended time window covering multiple THz pulses. Fourier transformation of 10 consecutive THz pulses enables us to obtain the spectrum of THz comb mode having a linewidth of 25 MHz at intervals of 250 MHz. Further expansion of time window up to 100 consecutive THz pulses reduces the linewidth of THz comb mode down to 2.5 MHz while conserving interval of 250 MHz. The observed THz comb mode can be used as a precise and accurate frequency marker for broadband THz spectroscopy because it is phase-locked to a microwave frequency standard by laser control. The spectroscopy of pharmaceutical tablets and low-pressure molecular gas is used to demonstrate the utility of this approach, indicating a spectral resolution of 250 MHz. The proposed method enables frequency calibration of the THz spectrometer based on a microwave frequency standard.
Applied Optics | 1994
Shuko Yokoyama; Tsutomu Araki; Norihito Suzuki
A frequency-stabilized two-mode He-Ne laser has been developed. The intermode beat frequency of the experimental laser was approximately 600 MHz for a 25-cm cavity. The laser frequency in which the mode stands is pulled to the center of the gain curve (frequency pulling). The degree of pulling depends on where the longitudinal modes stand in the broadened gain curve. Beat frequency is thereby changed periodically of the order of hundreds of kilohertz with respect to cavity expansion. The frequency pulling was effectively used for frequency stabilization of the laser. The standing position of the longitudinal mode lights was locked in the gain curve by controlling the change of intermode beat frequency. A microwave mixer was applied to extract the frequency change of the intermode beat. Excellent frequency stability (10(10) for the laser oscillation and 10(6) for the beat frequency) was attained. The polarization orthogonality of the proposed laser was superior to that of Zeeman lasers.
Collaboration
Dive into the Shuko Yokoyama's collaboration.
National Institute of Advanced Industrial Science and Technology
View shared research outputsNational Institute of Advanced Industrial Science and Technology
View shared research outputs