Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shulei Sun is active.

Publication


Featured researches published by Shulei Sun.


Applied and Environmental Microbiology | 2007

Ecological Genomics of Marine Roseobacters

Mary Ann Moran; R. Belas; M. A. Schell; José M. González; F. Sun; Shulei Sun; Brian J. Binder; J. Edmonds; Wenying Ye; Beth N. Orcutt; Erinn C. Howard; Christof Meile; W. Palefsky; Alexander Goesmann; Q. Ren; I. Paulsen; L. E. Ulrich; L. S. Thompson; E. Saunders; Alison Buchan

ABSTRACT Bacterioplankton of the marine Roseobacter clade have genomes that reflect a dynamic environment and diverse interactions with marine plankton. Comparative genome sequence analysis of three cultured representatives suggests that cellular requirements for nitrogen are largely provided by regenerated ammonium and organic compounds (polyamines, allophanate, and urea), while typical sources of carbon include amino acids, glyoxylate, and aromatic metabolites. An unexpectedly large number of genes are predicted to encode proteins involved in the production, degradation, and efflux of toxins and metabolites. A mechanism likely involved in cell-to-cell DNA or protein transfer was also discovered: vir-related genes encoding a type IV secretion system typical of bacterial pathogens. These suggest a potential for interacting with neighboring cells and impacting the routing of organic matter into the microbial loop. Genes shared among the three roseobacters and also common in nine draft Roseobacter genomes include those for carbon monoxide oxidation, dimethylsulfoniopropionate demethylation, and aromatic compound degradation. Genes shared with other cultured marine bacteria include those for utilizing sodium gradients, transport and metabolism of sulfate, and osmoregulation.


The ISME Journal | 2010

Genome characteristics of a generalist marine bacterial lineage

Ryan J. Newton; Laura E Griffin; Kathy M. Bowles; Christof Meile; Scott M. Gifford; Carrie E. Givens; Erinn C. Howard; Eric King; Clinton A. Oakley; Chris R. Reisch; Johanna M. Rinta-Kanto; Shalabh Sharma; Shulei Sun; Vanessa A. Varaljay; Maria Vila-Costa; Jason R. Westrich; Mary Ann Moran

Members of the marine Roseobacter lineage have been characterized as ecological generalists, suggesting that there will be challenges in assigning well-delineated ecological roles and biogeochemical functions to the taxon. To address this issue, genome sequences of 32 Roseobacter isolates were analyzed for patterns in genome characteristics, gene inventory, and individual gene/pathway distribution using three predictive frameworks: phylogenetic relatedness, lifestyle strategy and environmental origin of the isolate. For the first framework, a phylogeny containing five deeply branching clades was obtained from a concatenation of 70 conserved single-copy genes. Somewhat surprisingly, phylogenetic tree topology was not the best model for organizing genome characteristics or distribution patterns of individual genes/pathways, although it provided some predictive power. The lifestyle framework, established by grouping isolates according to evidence for heterotrophy, photoheterotrophy or autotrophy, explained more of the gene repertoire in this lineage. The environment framework had a weak predictive power for the overall genome content of each strain, but explained the distribution of several individual genes/pathways, including those related to phosphorus acquisition, chemotaxis and aromatic compound degradation. Unassembled sequences in the Global Ocean Sampling metagenomic data independently verified this global-scale geographical signal in some Roseobacter genes. The primary findings emerging from this comparative genome analysis are that members of the lineage cannot be easily collapsed into just a few ecologically differentiated clusters (that is, there are almost as many clusters as isolates); the strongest framework for predicting genome content is trophic strategy, but no single framework gives robust predictions; and previously unknown homologs to genes for H2 oxidation, proteorhodopsin-based phototrophy, xanthorhodpsin-based phototrophy, and CO2 fixation by Form IC ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) expand the possible mechanisms for energy and carbon acquisition in this remarkably versatile bacterial lineage.


Nature | 2008

Bacterial carbon processing by generalist species in the coastal ocean

Xiaozhen Mou; Shulei Sun; Robert Edwards; Robert E. Hodson; Mary Ann Moran

The assimilation and mineralization of dissolved organic carbon (DOC) by marine bacterioplankton is a major process in the ocean carbon cycle. However, little information exists on the specific metabolic functions of participating bacteria and on whether individual taxa specialize on particular components of the marine DOC pool. Here we use experimental metagenomics to show that coastal communities are populated by taxa capable of metabolizing a wide variety of organic carbon compounds. Genomic DNA captured from bacterial community subsets metabolizing a single model component of the DOC pool (either dimethylsulphoniopropionate or vanillate) showed substantial overlap in gene composition as well as a diversity of carbon-processing capabilities beyond the selected phenotypes. Our direct measure of niche breadth for bacterial functional assemblages indicates that, in accordance with ecological theory, heterogeneity in the composition and supply of organic carbon to coastal oceans may favour generalist bacteria. In the important interplay between microbial community structure and biogeochemical cycling, coastal heterotrophic communities may be controlled less by transient changes in the carbon reservoir that they process and more by factors such as trophic interactions and physical conditions.


Environmental Microbiology | 2009

Comparative day/night metatranscriptomic analysis of microbial communities in the North Pacific subtropical gyre

Rachel S. Poretsky; Ian Hewson; Shulei Sun; Andrew E. Allen; Jonathan P. Zehr; Mary Ann Moran

Metatranscriptomic analyses of microbial assemblages (< 5 microm) from surface water at the Hawaiian Ocean Time-Series (HOT) revealed community-wide metabolic activities and day/night patterns of differential gene expression. Pyrosequencing produced 75 558 putative mRNA reads from a day transcriptome and 75 946 from a night transcriptome. Taxonomic binning of annotated mRNAs indicated that Cyanobacteria contributed a greater percentage of the transcripts (54% of annotated sequences) than expected based on abundance (35% of cell counts and 21% 16S rRNA of libraries), and may represent the most actively transcribing cells in this surface ocean community in both the day and night. Major heterotrophic taxa contributing to the community transcriptome included alpha-Proteobacteria (19% of annotated sequences, most of which were SAR11-related) and gamma-Proteobacteria (4%). The composition of transcript pools was consistent with models of prokaryotic gene expression, including operon-based transcription patterns and an abundance of genes predicted to be highly expressed. Metabolic activities that are shared by many microbial taxa (e.g. glycolysis, citric acid cycle, amino acid biosynthesis and transcription and translation machinery) were well represented among the community transcripts. There was an overabundance of transcripts for photosynthesis, C1 metabolism and oxidative phosphorylation in the day compared with night, and evidence that energy acquisition is coordinated with solar radiation levels for both autotrophic and heterotrophic microbes. In contrast, housekeeping activities such as amino acid biosynthesis, membrane synthesis and repair, and vitamin biosynthesis were overrepresented in the night transcriptome. Direct sequencing of these environmental transcripts has provided detailed information on metabolic and biogeochemical responses of a microbial community to solar forcing.


Applied and Environmental Microbiology | 2009

Prokaryotic Genomes and Diversity in Surface Ocean Waters: Interrogating the Global Ocean Sampling Metagenome†

Erin J. Biers; Shulei Sun; Erinn C. Howard

ABSTRACT The Sorcerer II Global Ocean Sampling (GOS) sequencing effort has vastly expanded the landscape of metagenomics, providing an opportunity to study the genetic potential of surface ocean water bacterioplankton on a global scale. Here we describe the habitat-based microbial diversity, both taxon evenness and taxon richness, for each GOS site and estimate genome characteristics of a typical free-living, surface ocean water bacterium. While Alphaproteobacteria and particularly SAR11 dominate the 0.1- to 0.8-μm size fraction of surface ocean water bacteria (43% and 31%, respectively), the proportions of other taxa varied with ocean habitat type. Within each habitat type, lower-bound estimates of phylum richness ranged between 18 and 59 operational taxonomic units (OTUs). However, OTU richness was relatively low in the hypersaline lagoon community at every taxonomic level, and open-ocean communities had much more microdiversity than any other habitat. Based on the abundance of single-copy eubacterial genes from the same data set, we estimate that the genome of an average free-living surface ocean water bacterium (sized between 0.1 and 0.8 μm) contains ∼1,019 genes and 1.8 copies of the 16S rRNA gene, suggesting that these bacteria have relatively streamlined genomes in comparison to those of cultured bacteria and bacteria from other habitats (e.g., soil or acid mine drainage).


Environmental Microbiology | 2010

Transporter genes expressed by coastal bacterioplankton in response to dissolved organic carbon

Rachel S. Poretsky; Shulei Sun; Xiaozhen Mou; Mary Ann Moran

Coastal ocean bacterioplankton control the flow of dissolved organic carbon (DOC) from terrestrial and oceanic sources into the marine food web, and regulate the release of inorganic carbon to atmospheric and offshore reservoirs. While the fate of the chemically complex coastal DOC reservoir has long been recognized as a critical feature of the global carbon budget, it has been problematic to identify both the compounds that serve as major conduits for carbon flux and the roles of individual bacterioplankton taxa in mediating that flux. Here we analyse random libraries of expressed genes from a coastal bacterial community to identify sequences representing DOC-transporting proteins. Predicted substrates of expressed transporter genes indicated that carboxylic acids, compatible solutes, polyamines and lipids may be key components of the biologically labile DOC pool in coastal waters, in addition to canonical bacterial substrates such as amino acids, oligopeptides and carbohydrates. Half of the expressed DOC transporter sequences in this coastal ocean appeared to originate from just eight taxa: Roseobacter, SAR11, Flavobacteriales and five orders of γ-Proteobacteria. While all major taxa expressed transporter genes for some DOC components (e.g. amino acids), there were indications of specialization within the bacterioplankton community for others (e.g. carbohydrates, carboxylic acids and polyamines). Experimental manipulations of the natural DOC pool that increased the concentration of phytoplankton- or vascular plant-derived compounds invoked a readily measured response in bacterial transporter gene expression. This highly resolved view of the potential for carbon flux into heterotrophic bacterioplankton cells identifies possible bioreactive components of the coastal DOC pool and highlights differing ecological roles in carbon turnover for the resident bacterial taxa.


Environmental Microbiology | 2008

Abundant and diverse bacteria involved in DMSP degradation in marine surface waters

Erinn C. Howard; Shulei Sun; Erin J. Biers; Mary Ann Moran

An expanded analysis of oceanic metagenomic data indicates that the majority of prokaryotic cells in marine surface waters have the genetic capability to demethylate dimethylsulfoniopropionate (DMSP). The 1701 homologues of the DMSP demethylase gene, dmdA, identified in the (2007) Global Ocean Sampling (GOS) metagenome, are sufficient for 58% (+/-9%) of sampled cells to participate in this critical step in the marine sulfur cycle. This remarkable frequency of DMSP-demethylating cells is in accordance with biogeochemical data indicating that marine phytoplankton direct up to 10% of fixed carbon to DMSP synthesis, and that most of this DMSP is subsequently degraded by bacteria via demethylation. The GOS metagenomic data also revealed a new cluster of dmdA sequences (designated Clade E) that implicates marine gammaproteobacteria in DMSP demethylation, along with previously recognized alphaproteobacterial groups Roseobacter and SAR11. Analyses of G+C content and gene order indicate that lateral gene transfer is likely responsible for the wide distribution of dmdA among diverse taxa, contributing to the homogenization of biogeochemical roles among heterotrophic marine bacterioplankton. Candidate genes for the competing bacterial degradation process that converts DMSP to the climate-active gas dimethylsulfide (DMS) (dddD and dddL) occur infrequently in the (2007) GOS metagenome, suggesting either that the key DMS-producing bacterial genes are yet to be identified or that DMS formation by free-living bacterioplankton is insignificant relative to their demethylation activity.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Microspatial gene expression patterns in the Amazon River Plume

Brandon M. Satinsky; Byron C. Crump; Christa B. Smith; Shalabh Sharma; Brian L. Zielinski; Mary Doherty; Jun Meng; Shulei Sun; Patricia M. Medeiros; John H. Paul; Victoria J. Coles; Patricia L. Yager; Mary Ann Moran

Significance The microbial community of the Amazon River Plume determines the fate of the world’s largest input of terrestrial carbon and nutrients to the ocean. By benchmarking with internal standards during sample collection, we determined that each liter of plume seawater contains 1 trillion genes and 50 billion transcripts from thousands of bacterial, archaeal, and eukaryotic taxa. Gene regulation by taxa inhabiting distinct microenvironments provides insights into micron-scale patterns of transformations in the marine carbon, nitrogen, phosphorus, and sulfur cycles in this globally important ecosystem. We investigated expression of genes mediating elemental cycling at the microspatial scale in the ocean’s largest river plume using, to our knowledge, the first fully quantitative inventory of genes and transcripts. The bacterial and archaeal communities associated with a phytoplankton bloom in Amazon River Plume waters at the outer continental shelf in June 2010 harbored ∼1.0 × 1013 genes and 4.7 × 1011 transcripts per liter that mapped to several thousand microbial genomes. Genomes from free-living cells were more abundant than those from particle-associated cells, and they generated more transcripts per liter for carbon fixation, heterotrophy, nitrogen and phosphorus uptake, and iron acquisition, although they had lower expression ratios (transcripts⋅gene−1) overall. Genomes from particle-associated cells contributed more transcripts for sulfur cycling, aromatic compound degradation, and the synthesis of biologically essential vitamins, with an overall twofold up-regulation of expression compared with free-living cells. Quantitatively, gene regulation differences were more important than genome abundance differences in explaining why microenvironment transcriptomes differed. Taxa contributing genomes to both free-living and particle-associated communities had up to 65% of their expressed genes regulated differently between the two, quantifying the extent of transcriptional plasticity in marine microbes in situ. In response to patchiness in carbon, nutrients, and light at the micrometer scale, Amazon Plume microbes regulated the expression of genes relevant to biogeochemical processes at the ecosystem scale.


The ISME Journal | 2010

Transcriptomic analysis of a marine bacterial community enriched with dimethylsulfoniopropionate

Maria Vila-Costa; Johanna M. Rinta-Kanto; Shulei Sun; Shalabh Sharma; Rachel S. Poretsky; Mary Ann Moran

Dimethylsulfoniopropionate (DMSP) is an important source of reduced sulfur and carbon for marine microbial communities, as well as the precursor of the climate-active gas dimethylsulfide (DMS). In this study, we used metatranscriptomic sequencing to analyze gene expression profiles of a bacterial assemblage from surface waters at the Bermuda Atlantic Time-series Study (BATS) station with and without a short-term enrichment of DMSP (25 nM for 30 min). An average of 303 143 reads were obtained per treatment using 454 pyrosequencing technology, of which 51% were potential protein-encoding sequences. Transcripts from Gammaproteobacteria and Bacteroidetes increased in relative abundance on DMSP addition, yet there was little change in the contribution of two bacterioplankton groups whose cultured members harbor known DMSP degradation genes, Roseobacter and SAR11. The DMSP addition led to an enrichment of transcripts supporting heterotrophic activity, and a depletion of those encoding light-related energy generation. Genes for the degradation of C3 compounds were significantly overrepresented after DMSP addition, likely reflecting the metabolism of the C3 component of DMSP. Mapping these transcripts to known biochemical pathways indicated that both acetyl-CoA and succinyl-CoA may be common entry points of this moiety into the tricarboxylic acid cycle. In a short time frame (30 min) in the extremely oligotrophic Sargasso Sea, different gene expression patterns suggest the use of DMSP by a diversity of marine bacterioplankton as both carbon and sulfur sources.


Applied and Environmental Microbiology | 2010

Deep Sequencing of a Dimethylsulfoniopropionate-Degrading Gene (dmdA) by Using PCR Primer Pairs Designed on the Basis of Marine Metagenomic Data

Vanessa A. Varaljay; Erinn C. Howard; Shulei Sun; Mary Ann Moran

ABSTRACT In silico design and testing of environmental primer pairs with metagenomic data are beneficial for capturing a greater proportion of the natural sequence heterogeneity in microbial functional genes, as well as for understanding limitations of existing primer sets that were designed from more restricted sequence data. PCR primer pairs targeting 10 environmental clades and subclades of the dimethylsulfoniopropionate (DMSP) demethylase protein, DmdA, were designed using an iterative bioinformatic approach that took advantage of thousands of dmdA sequences captured in marine metagenomic data sets. Using the bioinformatically optimized primers, dmdA genes were amplified from composite free-living coastal bacterioplankton DNA (from 38 samples over 5 years and two locations) and sequenced using 454 technology. An average of 6,400 amplicons per primer pair represented more than 700 clusters of environmental dmdA sequences across all primers, with clusters defined conservatively at >90% nucleotide sequence identity (∼95% amino acid identity). Degenerate and inosine-based primers did not perform better than specific primer pairs in determining dmdA richness and sometimes captured a lower degree of richness of sequences from the same DNA sample. A comparison of dmdA sequences in free-living versus particle-associated bacteria in southeastern U.S. coastal waters showed that sequence richness in some dmdA subgroups differed significantly between size fractions, though most gene clusters were shared (52 to 91%) and most sequences were affiliated with the shared clusters (∼90%). The availability of metagenomic sequence data has significantly enhanced the design of quantitative PCR primer pairs for this key functional gene, providing robust access to the capabilities and activities of DMSP demethylating bacteria in situ.

Collaboration


Dive into the Shulei Sun's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria Vila-Costa

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ronald P. Kiene

University of South Alabama

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge