Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shumin Gao is active.

Publication


Featured researches published by Shumin Gao.


Circulation Research | 2007

Sirt1 Regulates Aging and Resistance to Oxidative Stress in the Heart

Ralph R. Alcendor; Shumin Gao; Peiyong Zhai; Daniela Zablocki; Eric Holle; Xianzhong Yu; Bin Tian; Thomas E. Wagner; Stephen F. Vatner; Junichi Sadoshima

Silent information regulator (Sir)2, a class III histone deacetylase, mediates lifespan extension in model organisms and prevents apoptosis in mammalian cells. However, beneficial functions of Sir2 remain to be shown in mammals in vivo at the organ level, such as in the heart. We addressed this issue by using transgenic mice with heart-specific overexpression of Sirt1, a mammalian homolog of Sir2. Sirt1 was significantly upregulated (4- to 8-fold) in response to pressure overload and oxidative stress in nontransgenic adult mouse hearts. Low (2.5-fold) to moderate (7.5-fold) overexpression of Sirt1 in transgenic mouse hearts attenuated age-dependent increases in cardiac hypertrophy, apoptosis/fibrosis, cardiac dysfunction, and expression of senescence markers. In contrast, a high level (12.5-fold) of Sirt1 increased apoptosis and hypertrophy and decreased cardiac function, thereby stimulating the development of cardiomyopathy. Moderate overexpression of Sirt1 protected the heart from oxidative stress induced by paraquat, with increased expression of antioxidants, such as catalase, through forkhead box O (FoxO)-dependent mechanisms, whereas high levels of Sirt1 increased oxidative stress in the heart at baseline. Thus, mild to moderate expression of Sirt1 retards aging of the heart, whereas a high dose of Sirt1 induces cardiomyopathy. Furthermore, although high levels of Sirt1 increase oxidative stress, moderate expression of Sirt1 induces resistance to oxidative stress and apoptosis. These results suggest that Sirt1 could retard aging and confer stress resistance to the heart in vivo, but these beneficial effects can be observed only at low to moderate doses (up to 7.5-fold) of Sirt1.


Journal of Biological Chemistry | 2010

MicroRNA-21 Is a Downstream Effector of AKT That Mediates Its Antiapoptotic Effects via Suppression of Fas Ligand

Danish Sayed; Minzhen He; Chull Hong; Shumin Gao; Shweta Rane; Zhi Yang; Maha Abdellatif

MicroRNA-21 (miR-21) is highly up-regulated during hypertrophic and cancerous cell growth. In contrast, we found that it declines in cardiac myocytes upon exposure to hypoxia. Thus, the objective was to explore its role during hypoxia. We show that miR-21 not only regulates phosphatase and tensin homologue deleted on chromosome 10 (PTEN), but also targets Fas ligand (FasL). During prolonged hypoxia, down-regulation of miR-21 proved necessary and sufficient for enhancing expression of both proteins. We demonstrate here for the first time that miR-21 is positively regulated via an AKT-dependent pathway, which is depressed during prolonged hypoxia. Accordingly, hypoxia-induced down-regulation of miR-21 and up-regulation of FasL and PTEN were reversed by activated AKT and reproduced by a dominant negative mutant, wortmannin, or PTEN. Moreover, the antiapoptotic function of AKT partly required miR-21, which was sufficient for inhibition of caspase-8 activity and mitochondrial damage. In consensus, overexpression of miR-21 in a transgenic mouse heart resulted in suppression of ischemia-induced up-regulation of PTEN and FasL expression, an increase in phospho-AKT, a smaller infarct size, and ameliorated heart failure. Thus, we have identified a unique aspect of the function of AKT by which it inhibits apoptosis through miR-21-dependent suppression of FasL.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Distinct roles of GSK-3α and GSK-3β phosphorylation in the heart under pressure overload

Takahisa Matsuda; Peiyong Zhai; Yasuhiro Maejima; Chull Hong; Shumin Gao; Bin Tian; Kazumichi Goto; Hiromitsu Takagi; Mimi Tamamori-Adachi; Shigetaka Kitajima; Junichi Sadoshima

Glycogen synthase kinase-3 (GSK-3) is a master regulator of growth and death in cardiac myocytes. GSK-3 is inactivated by hypertrophic stimuli through phosphorylation-dependent and -independent mechanisms. Inactivation of GSK-3 removes the negative constraint of GSK-3 on hypertrophy, thereby stimulating cardiac hypertrophy. N-terminal phosphorylation of the GSK-3 isoforms GSK-3α and GSK-3β by upstream kinases (e.g., Akt) is a major mechanism of GSK-3 inhibition. Nonetheless, its role in mediating cardiac hypertrophy and failure remains to be established. Here we evaluated the role of Serine(S)21 and S9 phosphorylation of GSK-3α and GSK-3β in the regulation of cardiac hypertrophy and function during pressure overload (PO), using GSK-3α S21A knock-in (αKI) and GSK-3β S9A knock-in (βKI) mice. Although inhibition of S9 phosphorylation during PO in the βKI mice attenuated hypertrophy and heart failure (HF), inhibition of S21 phosphorylation in the αKI mice unexpectedly promoted hypertrophy and HF. Inhibition of S21 phosphorylation in GSK-3α, but not of S9 phosphorylation in GSK-3β, caused phosphorylation and down-regulation of G1-cyclins, due to preferential localization of GSK-3α in the nucleus, and suppressed E2F and markers of cell proliferation, including phosphorylated histone H3, under PO, thereby contributing to decreases in the total number of myocytes in the heart. Restoration of the E2F activity by injection of adenovirus harboring cyclin D1 with a nuclear localization signal attenuated HF under PO in the αKI mice. Collectively, our results reveal that whereas S9 phosphorylation of GSK-3β mediates pathological hypertrophy, S21 phosphorylation of GSK-3α plays a compensatory role during PO, in part by alleviating the negative constraint on the cell cycle machinery in cardiac myocytes.


Circulation Research | 2007

Inhibition of Glycogen Synthase Kinase 3β During Heart Failure Is Protective

Shinichi Hirotani; Peiyong Zhai; Hideharu Tomita; Jonathan Galeotti; Juan Pablo Marquez; Shumin Gao; Chull Hong; Atsuko Yatani; Jesús Avila; Junichi Sadoshima

Glycogen synthase kinase (GSK)-3, a negative regulator of cardiac hypertrophy, is inactivated in failing hearts. To examine the histopathological and functional consequence of the persistent inhibition of GSK-3&bgr; in the heart in vivo, we generated transgenic mice with cardiac-specific overexpression of dominant negative GSK-3&bgr; (Tg-GSK-3&bgr;-DN) and tetracycline-regulatable wild-type GSK-3&bgr;. GSK-3&bgr;-DN significantly reduced the kinase activity of endogenous GSK-3&bgr;, inhibited phosphorylation of eukaryotic translation initiation factor 2Bϵ, and induced accumulation of &bgr;-catenin and myeloid cell leukemia-1, confirming that GSK-3&bgr;-DN acts as a dominant negative in vivo. Tg-GSK-3&bgr;-DN exhibited concentric hypertrophy at baseline, accompanied by upregulation of the &agr;-myosin heavy chain gene and increases in cardiac function, as evidenced by a significantly greater Emax after dobutamine infusion and percentage of contraction in isolated cardiac myocytes, indicating that inhibition of GSK-3&bgr; induces well-compensated hypertrophy. Although transverse aortic constriction induced a similar increase in hypertrophy in both Tg-GSK-3&bgr;-DN and nontransgenic mice, Tg-GSK-3&bgr;-DN exhibited better left ventricular function and less fibrosis and apoptosis than nontransgenic mice. Induction of the GSK-3&bgr; transgene in tetracycline-regulatable wild-type GSK-3&bgr; mice induced left ventricular dysfunction and premature death, accompanied by increases in apoptosis and fibrosis. Overexpression of GSK-3&bgr;-DN in cardiac myocytes inhibited tumor necrosis factor-&agr;–induced apoptosis, and the antiapoptotic effect of GSK-3&bgr;-DN was abrogated in the absence of myeloid cell leukemia-1. These results suggest that persistent inhibition of GSK-3&bgr; induces compensatory hypertrophy, inhibits apoptosis and fibrosis, and increases cardiac contractility and that the antiapoptotic effect of GSK-3&bgr; inhibition is mediated by myeloid cell leukemia-1. Thus, downregulation of GSK-3&bgr; during heart failure could be compensatory.


Circulation | 2007

Disruption of Type 5 Adenylyl Cyclase Enhances Desensitization of Cyclic Adenosine Monophosphate Signal and Increases Akt Signal With Chronic Catecholamine Stress

Satoshi Okumura; Dorothy E. Vatner; Reiko Kurotani; Yunzhe Bai; Shumin Gao; Zengrong Yuan; Kousaku Iwatsubo; Coskun Ulucan; Jun-ichi Kawabe; Kaushik Ghosh; Stephen F. Vatner; Yoshihiro Ishikawa

Background— Desensitization of the cyclic adenosine monophosphate signal protects cardiac myocytes against catecholamine stress, thus preventing the development of apoptosis. Molecular mechanisms of desensitization have been well studied at the level of adrenergic receptors but less so at the level of the effector enzyme, adenylyl cyclase (AC). Methods and Results— When the effects of long-term (1 to 2 weeks) isoproterenol infusion were compared between type 5 AC-null mice (AC5KO) and wild-type controls, we found that the subsequent responses of left ventricular ejection fraction to sudden intravenous isoproterenol challenge were reduced in AC5KO compared with wild-type mice (ie, physiological desensitization was more effective in AC5KO), consistent with enhanced downregulation of AC catalytic activity in AC5KO. One mechanism for the less effective desensitization in wild-type mice was paradoxical upregulation of type 5 AC protein expression. The number of apoptotic myocytes was similar at baseline but was significantly less in AC5KO after infusion. This was accompanied by a 4-fold greater increase in Bcl-2 and a 3-fold greater increase in phospho-Akt in AC5KO. The latter is most likely mediated by increased membrane localization of phosphoinositide-dependent protein kinase 1, which is known to be inhibited by the cyclic adenosine monophosphate signal. Conclusions— The absence of type 5 AC results in more effective desensitization after long-term catecholamine stress and protects against the development of myocyte apoptosis and deterioration of cardiac function, potentially elucidating a novel approach to the therapy of heart failure.


American Journal of Physiology-heart and Circulatory Physiology | 2008

Proteasome inhibition decreases cardiac remodeling after initiation of pressure overload

Nadia Hedhli; Paulo Lizano; Chull Hong; Luke F. Fritzky; Sunil K. Dhar; Huasheng Liu; Yimin Tian; Shumin Gao; Kiran Madura; Stephen F. Vatner; Christophe Depre

We tested the possibility that proteasome inhibition may reverse preexisting cardiac hypertrophy and improve remodeling upon pressure overload. Mice were submitted to aortic banding and followed up for 3 wk. The proteasome inhibitor epoxomicin (0.5 mg/kg) or the vehicle was injected daily, starting 2 wk after banding. At the end of the third week, vehicle-treated banded animals showed significant (P<0.05) increase in proteasome activity (PA), left ventricle-to-tibial length ratio (LV/TL), myocyte cross-sectional area (MCA), and myocyte apoptosis compared with sham-operated animals and developed signs of heart failure, including increased lung weight-to-TL ratio and decreased ejection fraction. When compared with that group, banded mice treated with epoxomicin showed no increase in PA, a lower LV/TL and MCA, reduced apoptosis, stabilized ejection fraction, and no signs of heart failure. Because overload-mediated cardiac remodeling largely depends on the activation of the proteasome-regulated transcription factor NF-kappaB, we tested whether epoxomicin would prevent this activation. NF-kappaB activity increased significantly upon overload, which was suppressed by epoxomicin. The expression of NF-kappaB-dependent transcripts, encoding collagen types I and III and the matrix metalloprotease-2, increased (P<0.05) after banding, which was abolished by epoxomicin. The accumulation of collagen after overload, as measured by histology, was 75% lower (P<0.05) with epoxomicin compared with vehicle. Myocyte apoptosis increased by fourfold in hearts submitted to aortic banding compared with sham-operated hearts, which was reduced by half upon epoxomicin treatment. Therefore, we propose that proteasome inhibition after the onset of pressure overload rescues ventricular remodeling by stabilizing cardiac function, suppressing further progression of hypertrophy, repressing collagen accumulation, and reducing myocyte apoptosis.


Circulation Research | 2008

Lats2 is a negative regulator of myocyte size in the heart

Yutaka Matsui; Noritsugu Nakano; Dan Shao; Shumin Gao; Wenting Luo; Chull Hong; Peiyong Zhai; Eric Holle; Xianzhong Yu; Norikazu Yabuta; Wufan Tao; Thomas E. Wagner; Hiroshi Nojima; Junichi Sadoshima

Mammalian sterile 20–like kinase (Mst)1 plays an important role in mediating apoptosis and inhibiting hypertrophy in the heart. Because Hippo, a Drosophila homolog of Mst1, forms a signaling complex with Warts, a serine/threonine kinase, which in turn stimulates cell death and inhibits cell proliferation, mammalian homologs of Warts, termed Lats1 and Lats2, may mediate the function of Mst1. We here show that Lats2, but not Lats1, dose-dependently increased apoptosis in cultured cardiac myocytes. Lats2 also dose-dependently reduced [3H]phenylalanine incorporation and cardiac myocyte size, whereas dominant negative Lats2 (DN-Lats2) increased them, suggesting that endogenous Lats2 negatively regulates myocyte growth. DN-Lats2 significantly attenuated induction of apoptosis and inhibition of hypertrophy by Mst1, indicating that Lats2 mediates the function of Mst1 in cardiac myocytes. Cardiac specific overexpression of Lats2 in transgenic mice significantly reduced the size of left and right ventricles, whereas that of DN-Lats2 caused hypertrophy in both ventricles. Overexpression of Lats2 reduced left ventricular systolic and diastolic function without affecting baseline levels of myocardial apoptosis. Expression of endogenous Lats2 was significantly upregulated in response to transverse aortic constriction. Overexpression of DN-Lats2 significantly enhanced cardiac hypertrophy and inhibited cardiac myocyte apoptosis induced by transverse aortic constriction. These results suggest that Lats2 is necessary and sufficient for negatively regulating ventricular mass in the heart. Although Lats2 is required for cardiac myocyte apoptosis in response to pressure overload, it was not sufficient to induce apoptosis at baseline. In conclusion, Lats2 affects both growth and death of cardiac myocytes, but it primarily regulates the size of the heart and acts as an endogenous negative regulator of cardiac hypertrophy.


Journal of Clinical Investigation | 2010

Proapoptotic Rassf1A/Mst1 signaling in cardiac fibroblasts is protective against pressure overload in mice

Dominic P. Del Re; Takahisa Matsuda; Peiyong Zhai; Shumin Gao; Geoffrey J. Clark; Louise van der Weyden; Junichi Sadoshima

Mammalian sterile 20-like kinase 1 (Mst1) is a mammalian homolog of Drosophila Hippo, the master regulator of cell death, proliferation, and organ size in flies. It is the chief component of the mammalian Hippo pathway and promotes apoptosis and inhibits compensatory cardiac hypertrophy, playing a critical role in mediating heart failure. How Mst1 is regulated, however, remains unclear. Using genetically altered mice in which expression of the tumor suppressor Ras-association domain family 1 isoform A (Rassf1A) was modulated in a cell type-specific manner, we demonstrate here that Rassf1A is an endogenous activator of Mst1 in the heart. Although the Rassf1A/Mst1 pathway promoted apoptosis in cardiomyocytes, thereby playing a detrimental role, the same pathway surprisingly inhibited fibroblast proliferation and cardiac hypertrophy through both cell-autonomous and autocrine/paracrine mechanisms, playing a protective role during pressure overload. In cardiac fibroblasts, the Rassf1A/Mst1 pathway negatively regulated TNF-α, a key mediator of hypertrophy, fibrosis, and resulting cardiac dysfunction. These results suggest that the functional consequence of activating the proapoptotic Rassf1A/Mst1 pathway during pressure overload is cell type dependent in the heart and that suppressing this mechanism in cardiac fibroblasts could be detrimental.


Journal of Biological Chemistry | 2007

Glycogen Synthase Kinase-3α Reduces Cardiac Growth and Pressure Overload-induced Cardiac Hypertrophy by Inhibition of Extracellular Signal-regulated Kinases

Peiyong Zhai; Shumin Gao; Eric Holle; Xianzhong Yu; Atsuko Yatani; Thomas Wagner; Junichi Sadoshima

Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase having multiple functions and consisting of two isoforms, GSK-3α and GSK-3β. Pressure overload increases expression of GSK-3α but not GSK-3β. Despite our wealth of knowledge about GSK-3β, the function of GSK-3α in the heart is not well understood. To address this issue, we made cardiac-specific GSK-3α transgenic mice (Tg). Left ventricular weight and cardiac myocyte size were significantly smaller in Tg than in non-Tg (NTg) mice, indicating that GSK-3α inhibits cardiac growth. After 4 weeks of aortic banding (transverse aortic constriction (TAC)), increases in left ventricular weight and myocyte size were significantly smaller in Tg than in NTg, indicating that GSK-3α inhibits cardiac hypertrophy. More severe cardiac dysfunction developed in Tg after TAC. Increases in fibrosis and apoptosis were greater in Tg than in NTg after TAC. Among signaling molecules screened, ERK phosphorylation was decreased in Tg. Adenovirus-mediated overexpression of GSK-3α, but not GSK-3β, inhibited ERK in cultured cardiac myocytes. Knockdown of GSK-3α increased ERK phosphorylation, an effect that was inhibited by PD98059, rottlerin, and protein kinase Cϵ (PKCϵ) inhibitor peptide, suggesting that GSK-3α inhibits ERK through PKC-MEK-dependent mechanisms. Knockdown of GSK-3α increased protein content and reduced apoptosis, effects that were abolished by PD98059, indicating that inhibition of ERK plays a major role in the modulation of cardiac growth and apoptosis by GSK-3α. In conclusion, up-regulation of GSK-3α inhibits cardiac growth and pressure overload-induced cardiac hypertrophy but increases fibrosis and apoptosis in the heart. The anti-hypertrophic and pro-apoptotic effect of GSK-3α is mediated through inhibition of ERK.


Circulation | 2011

H11 Kinase/Heat Shock Protein 22 Deletion Impairs Both Nuclear and Mitochondrial Functions of STAT3 and Accelerates the Transition Into Heart Failure on Cardiac Overload

Hongyu Qiu; Paulo Lizano; Lydie Laure; Xiangzhen Sui; Eman Rashed; Ji Yeon Park; Chull Hong; Shumin Gao; Eric Holle; Didier Morin; Sunil K. Dhar; Thomas E. Wagner; Alain Berdeaux; Bin Tian; Stephen F. Vatner; Christophe Depre

Background— Cardiac overload, a major cause of heart failure, induces the expression of the heat shock protein H11 kinase/Hsp22 (Hsp22). Methods and Results— To determine the specific function of Hsp22 in that context, a knockout mouse model of Hsp22 deletion was generated. Although comparable to wild-type mice in basal conditions, knockout mice exposed to pressure overload developed less hypertrophy and showed ventricular dilation, impaired contractile function, increased myocyte length and accumulation of interstitial collagen, faster transition into heart failure, and increased mortality. Microarrays revealed that hearts from knockout mice failed to transactivate genes regulated by the transcription factor STAT3. Accordingly, nuclear STAT3 tyrosine phosphorylation was decreased in knockout mice. Silencing and overexpression experiments in isolated neonatal rat cardiomyocytes showed that Hsp22 activates STAT3 via production of interleukin-6 by the transcription factor nuclear factor-&kgr;B. In addition to its transcriptional function, STAT3 translocates to the mitochondria where it increases oxidative phosphorylation. Both mitochondrial STAT3 translocation and respiration were also significantly decreased in knockout mice. Conclusions— This study found that Hsp22 represents a previously undescribed activator of both nuclear and mitochondrial functions of STAT3, and its deletion in the context of pressure overload in vivo accelerates the transition into heart failure and increases mortality.

Collaboration


Dive into the Shumin Gao's collaboration.

Top Co-Authors

Avatar

Stephen F. Vatner

University of Medicine and Dentistry of New Jersey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chull Hong

University of Medicine and Dentistry of New Jersey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Misun Park

University of Medicine and Dentistry of New Jersey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xin Zhao

University of Medicine and Dentistry of New Jersey

View shared research outputs
Researchain Logo
Decentralizing Knowledge