Shuming Zhong
Jinan University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shuming Zhong.
PLOS ONE | 2015
Tao Liu; Shuming Zhong; Xiaoxiao Liao; Jian Chen; Tingting He; Shunkai Lai; Yanbin Jia
Object Studies have suggested that depression was accompanied by oxidative stress dysregulation, including abnormal total antioxidant capacity (TAC), antioxidants, free radicals, oxidative damage and autoimmune response products. This meta-analysis aims to analyse the clinical data quantitatively by comparing the oxidative stress markers between depressed patients and healthy controls. Methods A search was conducted to collect the studies that measured the oxidative stress markers in depressed patients. Studies were searched in Embase, Medline, PsychINFO, Science direct, CBMDisc, CNKI and VIP from 1990 to May 2015. Data were subjected to meta-analysis by using a random effects model for examining the effect sizes of the results. Bias assessments, heterogeneity assessments and sensitivity analyses were also conducted. Results 115 articles met the inclusion criteria. Lower TAC was noted in acute episodes (AEs) of depressed patients (p<0.05). Antioxidants, including serum paraoxonase, uric acid, albumin, high-density lipoprotein cholesterol and zinc levels were lower than controls (p<0.05); the serum uric acid, albumin and vitamin C levels were increased after antidepressant therapy (p<0.05). Oxidative damage products, including red blood cell (RBC) malondialdehyde (MDA), serum MDA and 8-F2-isoprostanes levels were higher than controls (p<0.05). After antidepressant medication, RBC and serum MDA levels were decreased (p<0.05). Moreover, serum peroxide in free radicals levels were higher than controls (p<0.05). There were no differences between the depressed patients and controls for other oxidative stress markers. Conclusion This meta-analysis supports the facts that the serum TAC, paraoxonase and antioxidant levels are lower, and the serum free radical and oxidative damage product levels are higher than controls in depressed patients. Meanwhile, the antioxidant levels are increased and the oxidative damage product levels are decreased after antidepressant medication. The pathophysiological relationships between oxidative stress and depression, and the potential benefits of antioxidant supplementation deserve further research.
Bipolar Disorders | 2015
Ying Wang; Shuming Zhong; Yanbin Jia; Zhifeng Zhou; Bing Wang; Jiyang Pan; Li Huang
Depression in the context of bipolar disorder (BD) is often misdiagnosed as unipolar depression (UD), leading to mistreatment and poor clinical outcomes. However, little is known about the similarities and differences in interhemispheric functional connectivity between BD and UD.
Journal of Affective Disorders | 2014
Shuming Zhong; Ying Wang; Guoxiang Zhao; Qi Xiang; Xueying Ling; Sirun Liu; Li Huang; Yanbin Jia
BACKGROUND Depression in the context of bipolar disorder (BD) is often misdiagnosed as major depressive disorder (MDD), leading to mistreatments and poor clinical outcomes for many bipolar patients. Previous neuroimaging studies found mixed results on brain structure, and biochemical metabolism of the two disorders. To eliminate the compounding effects of medication, and aging, this study sought to investigate the brain biochemical changes of treatment-naïve, non-late-life patients with MDD and BD in white matter in prefrontal (WMP) lobe, anterior cingulate cortex (ACC) and hippocampus by using proton magnetic resonance spectroscopy ((1)H-MRS). METHODS Three groups of participants were recruited: 26 MDD patients, 20 depressed BD patients, and 13 healthy controls. The multi-voxel (1)H-MRS [repetition time (TR)=1000ms; echo-time (TE)=144ms] was used for the measurement of N-acetylaspartate(NAA), choline containg compounds (Cho), and creatine (Cr) in three brain locations: white matter in prefrontal (WMP) lobe, anterior cingulate cortex (ACC), and hippocampus. Two ratios of NAA/Cr and Cho/Cr as a measure of brain biochemical changes were compared among three experimental groups. RESULTS On the comparison of brain biochemical changes, both MDD patients and BD patients showed many similarities compared to the controls. They both had a significantly lower NAA/Cr ratio in the left WMP lobe. There were no significant differences among three experimental groups for Cho/Cr ratio in the WMP lobe, and for the ratios of NAA/Cr and Cho/Cr in the bilateral ACC and hippocampus. The only difference between MDD and BD patients existed for the NAA/Cr ratio in the right WMP lobe. While MDD patients had a significantly lower NAA/Cr ratio than controls, BD patients showed no such differences. On the comparison of correlation of medical variables and brain biochemical changes, all participants demonstrated no significant correlations. CONCLUSION Reduced NAA/Cr ratio at the left WMP lobe indicated the dysfunction of neuronal viability in deep white matter, in both MDD and BD patients who shared similarities of brain biochemical abnormalities, which might imply an overlap in neuropathology of depression.
Journal of Affective Disorders | 2016
Lianping Zhao; Ying Wang; Yanbin Jia; Shuming Zhong; Yao Sun; Zhifeng Zhou; Zhongping Zhang; Li Huang
BACKGROUND Depression in the context of bipolar disorder (BD) is often misdiagnosed as unipolar depression (UD), leading to mistreatment and poor clinical outcomes. However, little is known about the similarities and differences in cerebellum between BD and UD. METHODS Patients with BD (n=35) and UD (n=30) during a depressive episode as well as 40 healthy controls underwent diffusional kurtosis imaging (DKI) and three dimensional arterial spin labeling (3D ASL). The DKI parameters including mean kurtosis (MK), axial kurtosis (Ka), radial kurtosis (Kr),fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (Da) and radial diffusivity (Dr) and 3D ASL parameters (i.e. cerebral blood flow) was measured by using regions-of-interest (ROIs) analysis in the superior cerebellar peduncles (SCP), middle cerebellar peduncles (MCP) and dentate nuclei (DN) of cerebellum. RESULTS Patients with UD exhibited significant differences from controls for DKI measures in bilateral SCP and MCP and cerebral blood flow (CBF) in bilateral SCP and left DN. Patients with BD exhibited significant differences from controls for DKI measures in the right MCP and left DN and CBF in the left DN. Patients with UD showed significantly lower MD values compared with patients with BD in the right SCP. Correlation analysis showed there were negative correlations between illness duration and MD and Dr values in the right SCP in UD. LIMITATIONS This study was cross-sectional and the sample size was not large. Parts of the patients included were under medication prior to MRI scanning. CONCLUSIONS Our findings provide new evidence of microstructural changes in cerebellum in BD and UD. The two disorders may have overlaps in microstructural abnormality in MCP and DN during the depressive period. Microstructural abnormality in SCP may be a key neurobiological feature of UD.
Radiology | 2016
Ying Wang; Shuming Zhong; Yanbin Jia; Yao Sun; Bing Wang; Tao Liu; Jiyang Pan; Li Huang
Purpose To investigate the whole-brain intrinsic functional connectivity patterns of patients with bipolar disorder (BD). Materials and Methods This prospective study was approved by the research ethics committee, and all participants provided informed consent. Thirty-seven patients with nonmedicated BD II depression and 37 healthy control participants underwent resting-state functional magnetic resonance (MR) imaging. Whole-brain connectivity was analyzed by using a graph theory approach: functional connectivity strength (FCS). Clinical state was assessed by using the 24-item Hamilton Depression Rating Scale and the Young Mania Rating Scale. Two-sample t test and nonparametric correlation analysis were used. Results Compared with healthy control participants, patients with BD II showed decreased FCS in the default mode network (ie, the bilateral medial prefrontal cortex, bilateral middle temporal gyrus, left precuneus, and right posterior cingulate cortex), right supramarginal gyrus and angular gyrus, right superior frontal gyrus, and right superior parietal gyrus and increased FCS in the bilateral temporal pole (including the parahippocampal gyrus and amygdale), left anterior cingulate cortex, left superior temporal gyrus, right lingual gyrus, and left anterior lobe of the cerebellum (P < .05; AlphaSim corrected). Conclusion These results suggest that patients with BD have disrupted intrinsic functional connectivity mainly in the default mode network and limbic system, which might be associated with the pathophysiologic structure of BD. (©) RSNA, 2016.
Journal of Affective Disorders | 2015
Yanbin Jia; Shuming Zhong; Ying Wang; Tao Liu; Xiaoxiao Liao; Li Huang
BACKGROUND Previous neuroimaging studies found evidence of potential brain biochemical abnormalities in patients with major depressive disorder (MDD). Abnormal serum thyroid hormone levels were also found in MDD patients, which may correlated with the abnormal biochemical metabolism of brain. However, they rarely excluded the compounding effects of medication, and brain degeneration. This study sought to investigate the relationship between the biochemical metabolism and the serum thyroid hormone levels in first-episode, treatment-naive, non-late-life patients with MDD. METHODS 26 first-episode, treatment-naive, non-late-life patients with MDD and 13 healthy controls were enrolled in this study. Participants underwent two-dimensinal multivoxel proton magnetic resonance spectroscopy ((1)H MRS) [repetition time (TR)=1000ms; echo-time (TE)=144ms] at 1.5T to obtain bilateral metabolite levels from the white matter in prefrontal (WMP) lobe, anterior cingulate cortex (ACC), and hippocampus. The ratios of N-acetylaspartate (NAA)/creatine (Cr) and choline containg compounds (Cho)/creatine (Cr) were calculated. Morning serum free triiodothyronine (FT3), free thyroxin (FT4), total triiodothyronine (T3), total thyroxin (T4), and thyroid-stimulating hormone (TSH) were measured before antidepressant treatment. RESULTS On the comparison of brain biochemical changes, MDD patients had a significantly lower NAA/Cr ratio in the left WMP, and lower NAA/Cr and Cho/Cr ratios in the right WMP when compared to the controls. There were no significant differences in the metabolite ratios in the bilateral ACC, and hippocampus. On the comparison of serum thyroid hormone levels, MDD patients had a significantly decreased T3 and TSH levels. On the comparison of correlation of brain biochemical changes and serum thyroid hormone levels in patients with MDD, the NAA/Cr ratio in the right WMP was positively correlated with the level of TSH. CONCLUSION These findings suggest that biochemical abnormalities and thyroid dysfunction may emerge early in the course of MDD. Dysfunction of neuronal function in the WMP may correlate with the abnormal TSH in patients with MDD, which may be related to the neuropathology of depression.
EBioMedicine | 2017
Meiqi Niu; Ying Wang; Yanbin Jia; Junjing Wang; Shuming Zhong; Jiabao Lin; Yao Sun; Ling Zhao; Xiaojin Liu; Li Huang; Ruiwang Huang
Major depressive disorder (MDD) and bipolar disorder (BD) are severe psychiatric diseases with overlapping symptomatology. Although previous studies reported abnormal brain structures in MDD or BD patients, the disorder-specific underlying neural mechanisms remain poorly understood. The purpose of this study was to investigate the whole-brain gray matter morphological patterns in unmedicated patients with MDD or BD and to identify the shared and disease-specific brain morphological alterations in these two disorders. We acquired high-resolution brain structural MRI data from a sample of 36 MDD patients, 32 BD patients, and 30 healthy controls. Using FreeSurfer, we estimated their brain cortical thickness (CT) and compared between-group difference in multiple locations across the continuous cortical surface. Compared to the healthy controls, both the MDD and BD patient groups showed significantly reduced CT in the left inferior temporal cortex (ITC). However, compared to the MDD patients, the BD patients showed a significantly thinner CT in the left rostral middle frontal region. In addition, compared to the healthy controls, the BD patients displayed thinner CT in the left ITC, left frontal pole (FPO), left superior frontal, right lateral occipital, right pars triangularis (PTRI) and right lateral orbitofrontal regions. Further analysis revealed a significantly positive correlation between the mean CT in the left FPO and the onset age, but a negative correlation between the mean CT in the right PTRI and the number of episodes, in the BD patients. Our findings revealed that the BD and MDD patients had variations in CT that were in common, but many more that were distinct, suggesting potential differences in their neural mechanisms.
Acta Psychiatrica Scandinavica | 2015
Ying Wang; Shuming Zhong; Yanbin Jia; Zhifeng Zhou; Q. Zhou; Li Huang
Abnormalities in structural and functional brain connectivity have been increasingly reported in patients with bipolar disorder (BD) by recent neuroimaging studies. However, relatively little is known about the changes in functional interaction between the cerebral hemispheres in BD. The present study aimed to examine the interhemispheric functional connectivity of the whole brain in patients with BD II during resting state.
Journal of Affective Disorders | 2014
Ying Wang; Yigang Feng; Yanbin Jia; Wensheng Wang; Yanping Xie; Yufang Guan; Shuming Zhong; Dan Zhu; Li Huang
OBJECTIVES Auditory sensory gating deficits have been reported in subjects with bipolar disorder, but the hemispheric and neuronal origins of this deficit are not well understood. Moreover, gating of the auditory evoked components reflecting early attentive stage of information processing has not been investigated in bipolar disorder. The objectives of this study were to investigate the right and left hemispheric auditory sensory gating of the M50 (preattentive processing) and M100 (early attentive processing) in patients diagnosed with bipolar I disorder by utilizing magnetoencephalography (MEG). METHODS Whole-head MEG data were acquired during the standard paired-click paradigm in 20 bipolar I disorder patients and 20 healthy controls. The M50 and the M100 responses were investigated, and dipole source localizations were also investigated. Sensory gating were determined by measuring the strength of the M50 and the M100 response to the second click divided by that of the first click (S2/S1). RESULTS In every subject, M50 and M100 dipolar sources localized to the left and right posterior portion of superior temporal gyrus (STG). Bipolar I disorder patients showed bilateral gating deficits in M50 and M100. The bilateral M50 S2 source strengths were significantly higher in the bipolar I disorder group compared to the control group. LIMITATIONS The sample size was relatively small. More studies with larger sample sizes are warranted. Bipolar subjects were taking a wide range of medications that could not be readily controlled for. CONCLUSIONS These findings suggest that bipolar I disorder patients have auditory gating deficits at both pre-attentive and early attentive levels, which might be related to STG structural abnormality.
Scientific Reports | 2017
Ying Wang; Junjing Wang; Yanbin Jia; Shuming Zhong; Meiqi Niu; Yao Sun; Zhangzhang Qi; Ling Zhao; Li Huang; Ruiwang Huang
Identifying brain differences and similarities between bipolar disorder (BD) and major depressive disorder (MDD) is necessary for increasing our understanding of the pathophysiology and for developing more effective treatments. However, the features of whole-brain intrinsic functional connectivity underlying BD and MDD have not been directly compared. We collected resting-state fMRI data from 48 BD patients, 48 MDD patients, and 51 healthy subjects. We constructed voxel-wise whole-brain functional networks and computed regional functional connectivity strength (FCS) using graph-theory and further divided the regional FCS into long-range FCS (lFCS) and short-range FCS (sFCS). Relative to the controls, both the BD and MDD patients showed decreased sFCS in the bilateral precuneus. In addition, the BD patients showed increased and the MDD patients showed decreased lFCS and sFCS in the bilateral cerebellum. The BD patients also showed increased lFCS in the right middle temporal gyrus and increased sFCS in the bilateral thalamus compared to either the MDD patients or the controls. These findings suggest that BD and MDD may have some shared as well as a greater number of specific impairments in their functional connectivity patterns, providing new evidence for the pathophysiology of BD and MDD at the large-scale whole brain connectivity level.