Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shumpei Ishikawa is active.

Publication


Featured researches published by Shumpei Ishikawa.


Nature | 2006

Global variation in copy number in the human genome

Richard Redon; Shumpei Ishikawa; Karen R. Fitch; Lars Feuk; George H. Perry; T. Daniel Andrews; Heike Fiegler; Michael H. Shapero; Andrew R. Carson; Wenwei Chen; Eun Kyung Cho; Stephanie Dallaire; Jennifer L. Freeman; Juan R. González; Mònica Gratacòs; Jing Huang; Dimitrios Kalaitzopoulos; Daisuke Komura; Jeffrey R. MacDonald; Christian R. Marshall; Rui Mei; Lyndal Montgomery; Keunihiro Nishimura; Kohji Okamura; Fan Shen; Martin J. Somerville; Joelle Tchinda; Armand Valsesia; Cara Woodwark; Fengtang Yang

Copy number variation (CNV) of DNA sequences is functionally significant but has yet to be fully ascertained. We have constructed a first-generation CNV map of the human genome through the study of 270 individuals from four populations with ancestry in Europe, Africa or Asia (the HapMap collection). DNA from these individuals was screened for CNV using two complementary technologies: single-nucleotide polymorphism (SNP) genotyping arrays, and clone-based comparative genomic hybridization. A total of 1,447 copy number variable regions (CNVRs), which can encompass overlapping or adjacent gains or losses, covering 360 megabases (12% of the genome) were identified in these populations. These CNVRs contained hundreds of genes, disease loci, functional elements and segmental duplications. Notably, the CNVRs encompassed more nucleotide content per genome than SNPs, underscoring the importance of CNV in genetic diversity and evolution. The data obtained delineate linkage disequilibrium patterns for many CNVs, and reveal marked variation in copy number among populations. We also demonstrate the utility of this resource for genetic disease studies.


Journal of Biological Chemistry | 2003

Functional Characterization of Rat Brain-specific Organic Anion Transporter (Oatp14) at the Blood-Brain Barrier HIGH AFFINITY TRANSPORTER FOR THYROXINE

Daisuke Sugiyama; Hiroyuki Kusuhara; Hirokazu Taniguchi; Shumpei Ishikawa; Yoshitane Nozaki; Hiroyuki Aburatani; Yuichi Sugiyama

Oatp14/blood-brain barrier-specific anion transporter 1 (Slc21a14) is a novel member of the organic anion transporting polypeptide (Oatp/OATP) family. Northern blot analysis revealed predominant expression of Oatp14 in the brain, and Western blot analysis revealed its expression in the brain capillary and choroid plexus. Immunohistochemical staining indicated that Oatp14 is expressed in the border of the brain capillary endothelial cells. When expressed in human embryonic kidney 293 cells, Oatp14 transports thyroxine (T4; prothyroid hormone) (Km = 0.18 μm), as well as amphipathic organic anions such as 17β estradiol-d-17β-glucuronide (Km = 10 μm), cerivastatin (Km = 1.3 μm), and troglitazone sulfate (Km = 0.76 μm). The uptake of triiodothyronine (T3), an active form produced from T4, was significantly greater in Oatp14-expressed cells than in vector-transfected cells, but the transport activity for T3 was ∼6-fold lower that for T4. The efflux of T4, preloaded into the cells, from Oatp14-expressed cells was more rapid than that from vector-transfected cells (0.032 versus 0.006 min–1). Therefore, Oatp14 can mediate a bidirectional transport of T4. Sulfobromophthalein, taurocholate, and estrone sulfate were potent inhibitors for Oatp14, whereas digoxin, p-aminohippurate, or leukotriene C4, or organic cations such as tetraetheylammonium or cimetidine had no effect. The expression levels of Oatp14 mRNA and protein were up- and down-regulated under hypo- and hyperthyroid conditions, respectively. Therefore, it may be speculated that Oatp14 plays a role in maintaining the concentration of T4 and, ultimately, T3 in the brain by transporting T4 from the circulating blood to the brain.


Nature Genetics | 2014

Trans-ancestry mutational landscape of hepatocellular carcinoma genomes

Yasushi Totoki; Kenji Tatsuno; Kyle Covington; Hiroki R. Ueda; Chad J. Creighton; Mamoru Kato; Shingo Tsuji; Lawrence A. Donehower; Betty L. Slagle; Hiromi Nakamura; Shogo Yamamoto; Eve Shinbrot; Natsuko Hama; Megan Lehmkuhl; Fumie Hosoda; Yasuhito Arai; Kim Walker; Mahmoud Dahdouli; Kengo Gotoh; Genta Nagae; Marie-Claude Gingras; Donna M. Muzny; Hidenori Ojima; Kazuaki Shimada; Yutaka Midorikawa; John A. Goss; Ronald T. Cotton; Akimasa Hayashi; Junji Shibahara; Shumpei Ishikawa

Diverse epidemiological factors are associated with hepatocellular carcinoma (HCC) prevalence in different populations. However, the global landscape of the genetic changes in HCC genomes underpinning different epidemiological and ancestral backgrounds still remains uncharted. Here a collection of data from 503 liver cancer genomes from different populations uncovered 30 candidate driver genes and 11 core pathway modules. Furthermore, a collaboration of two large-scale cancer genome projects comparatively analyzed the trans-ancestry substitution signatures in 608 liver cancer cases and identified unique mutational signatures that predominantly contribute to Asian cases. This work elucidates previously unexplored ancestry-associated mutational processes in HCC development. A combination of hotspot TERT promoter mutation, TERT focal amplification and viral genome integration occurs in more than 68% of cases, implicating TERT as a central and ancestry-independent node of hepatocarcinogenesis. Newly identified alterations in genes encoding metabolic enzymes, chromatin remodelers and a high proportion of mTOR pathway activations offer potential therapeutic and diagnostic opportunities.


Nature Genetics | 2011

High-resolution characterization of a hepatocellular carcinoma genome

Yasushi Totoki; Kenji Tatsuno; Shogo Yamamoto; Yasuhito Arai; Fumie Hosoda; Shumpei Ishikawa; Shuichi Tsutsumi; Kohtaro Sonoda; Hirohiko Totsuka; Takuya Shirakihara; Hiromi Sakamoto; Linghua Wang; Hidenori Ojima; Kazuaki Shimada; Tomoo Kosuge; Takuji Okusaka; Kazuto Kato; Jun Kusuda; Teruhiko Yoshida; Hiroyuki Aburatani; Tatsuhiro Shibata

Hepatocellular carcinoma, one of the most common virus-associated cancers, is the third most frequent cause of cancer-related death worldwide. By massively parallel sequencing of a primary hepatitis C virus–positive hepatocellular carcinoma (36× coverage) and matched lymphocytes (>28× coverage) from the same individual, we identified more than 11,000 somatic substitutions of the tumor genome that showed predominance of T>C/A>G transition and a decrease of the T>C substitution on the transcribed strand, suggesting preferential DNA repair. Gene annotation enrichment analysis of 63 validated non-synonymous substitutions revealed enrichment of phosphoproteins. We further validated 22 chromosomal rearrangements, generating four fusion transcripts that had altered transcriptional regulation (BCORL1-ELF4) or promoter activity. Whole-exome sequencing at a higher sequence depth (>76× coverage) revealed a TSC1 nonsense substitution in a subpopulation of the tumor cells. This first high-resolution characterization of a virus-associated cancer genome identified previously uncharacterized mutation patterns, intra-chromosomal rearrangements and fusion genes, as well as genetic heterogeneity within the tumor.


Cancer Research | 2009

Activation of DNA Methyltransferase 1 by EBV Latent Membrane Protein 2A Leads to Promoter Hypermethylation of PTEN Gene in Gastric Carcinoma

Rumi Hino; Hiroshi Uozaki; Noriko Murakami; Tetsuo Ushiku; Aya Shinozaki; Shumpei Ishikawa; Teppei Morikawa; Takeo Nakaya; Takashi Sakatani; Kenzo Takada; Masashi Fukayama

CpG island promoter methylation of tumor suppressor genes is one of the most characteristic abnormalities in EBV-associated gastric carcinoma (GC). Aberrant promoter methylation and expression loss of PTEN were evaluated in cancer tissues of GC by methylation-specific PCR and immunohistochemistry, respectively, showing that both abnormalities occurred concurrently in EBV-associated GC. PTEN abnormalities were reiterated in GC cell lines MKN-1 and MKN-7 infected with recombinant EBV, and DNA methyltransferase 1 (DNMT1) was commonly overexpressed in both cell lines. Stable and transient transfection systems in MKN-1 similarly showed that viral latent membrane protein 2A (LMP2A) up-regulated DNMT1, leading to an increase in methylation of the PTEN promoter. Importantly, the level of phosphorylated signal transducer and activator of transcription 3 (pSTAT3) increased in the nuclei of LMP2A-expressing GC cells, and knockdown of STAT3 counteracted LMP2A-mediated DNMT1 overexpression. Immunohistochemistry for both pSTAT3 and DNMT1 showed diffuse labeling in the nuclei of the cancer cells in GC tissues, especially in EBV-associated GC. Taken together, LMP2A induces the phosphorylation of STAT3, which activates DNMT1 transcription and causes PTEN expression loss through CpG island methylation of the PTEN promoter in EBV-associated GC. LMP2A plays an essential role in the epigenetic abnormalities in host stomach cells and in the development and maintenance of EBV-associated cancer.


Nature Genetics | 2014

Recurrent gain-of-function mutations of RHOA in diffuse-type gastric carcinoma

Miwako Kakiuchi; Takashi Nishizawa; Hiroki R. Ueda; Kengo Gotoh; Atsushi Tanaka; Akimasa Hayashi; Shogo Yamamoto; Kenji Tatsuno; Hiroto Katoh; Yoshiaki Watanabe; Takashi Ichimura; Tetsuo Ushiku; Shin-Ichi Funahashi; Keisuke Tateishi; Ikuo Wada; Nobuyuki Shimizu; Sachiyo Nomura; Kazuhiko Koike; Yasuyuki Seto; Masashi Fukayama; Hiroyuki Aburatani; Shumpei Ishikawa

Diffuse-type gastric carcinoma (DGC) is characterized by a highly malignant phenotype with prominent infiltration and stromal induction. We performed whole-exome sequencing on 30 DGC cases and found recurrent RHOA nonsynonymous mutations. With validation sequencing of an additional 57 cases, RHOA mutation was observed in 25.3% (22/87) of DGCs, with mutational hotspots affecting the Tyr42, Arg5 and Gly17 residues in RHOA protein. These positions are highly conserved among RHO family members, and Tyr42 and Arg5 are located outside the guanine nucleotide–binding pocket. Several lines of functional evidence indicated that mutant RHOA works in a gain-of-function manner. Comparison of mutational profiles for the major gastric cancer subtypes showed that RHOA mutations occur specifically in DGCs, the majority of which were histopathologically characterized by the presence of poorly differentiated adenocarcinomas together with more differentiated components in the gastric mucosa. Our findings identify a potential therapeutic target for this poor-prognosis subtype of gastric cancer with no available molecularly targeted drugs.


International Journal of Cancer | 2003

Glypican-3, overexpressed in hepatocellular carcinoma, modulates FGF2 and BMP-7 signaling.

Yutaka Midorikawa; Shumpei Ishikawa; Hiroko Iwanari; Takeshi Imamura; Hirohiko Sakamoto; Kohei Miyazono; Tatsuhiko Kodama; Masatoshi Makuuchi; Hiroyuki Aburatani

The Glypican (GPC) family is a prototypical member of the cell‐surface heparan sulfate proteoglycans (HSPGs). The HSPGs have been demonstrated to interact with growth factors, act as coreceptors and modulate growth factor activity. Here we show that based on oligonucleotide array analysis, GPC3 was upregulated in hepatocellular carcinoma (HCC). By northern blot analysis, GPC3 mRNA was found to be upregulated in 29 of 52 cases of HCC (55.7%). By Western blot analysis carried out with a monoclonal anti‐GPC3 antibody we generated, the GPC3 protein was found to be overexpressed in 6 hepatoma cell lines, HepG2, Hep3B, HT17, HuH6, HuH7 and PLC/PRF/5, as well as 22 tumors (42.3%). To investigate the role of overexpressed GPC3 in liver cancer, we analyzed its effects on cell growth of hepatoblastoma‐derived cells. Overexpression of GPC3 modulated cell proliferation by inhibiting fibroblast growth factor 2 (FGF2) and bone morphogenetic protein 7 (BMP‐7) activity. An interaction of GPC3 and FGF2 was revealed by co‐immunoprecipitation, while GPC3 was found to inhibit BMP‐7 signaling through the Smad pathway by reporter gene assay. The modulation of growth factors by GPC3 may help explain its role in liver carcinogenesis. In addition, the ability of HCC cells to express GPC3 at high levels may serve as a new tumor marker for HCC.


Nature Genetics | 2013

Recurrent mutations in multiple components of the cohesin complex in myeloid neoplasms

Ayana Kon; Lee-Yung Shih; Masashi Minamino; Masashi Sanada; Yuichi Shiraishi; Yasunobu Nagata; Kenichi Yoshida; Yusuke Okuno; Masashige Bando; Ryuichiro Nakato; Shumpei Ishikawa; Aiko Sato-Otsubo; Genta Nagae; Aiko Nishimoto; Claudia Haferlach; Daniel Nowak; Yusuke Sato; Tamara Alpermann; Masao Nagasaki; Teppei Shimamura; Hiroko Tanaka; Kenichi Chiba; Ryo Yamamoto; Tomoyuki Yamaguchi; Makoto Otsu; Naoshi Obara; Mamiko Sakata-Yanagimoto; Tsuyoshi Nakamaki; Ken Ishiyama; Florian Nolte

Cohesin is a multimeric protein complex that is involved in the cohesion of sister chromatids, post-replicative DNA repair and transcriptional regulation. Here we report recurrent mutations and deletions involving multiple components of the cohesin complex, including STAG2, RAD21, SMC1A and SMC3, in different myeloid neoplasms. These mutations and deletions were mostly mutually exclusive and occurred in 12.1% (19/157) of acute myeloid leukemia, 8.0% (18/224) of myelodysplastic syndromes, 10.2% (9/88) of chronic myelomonocytic leukemia, 6.3% (4/64) of chronic myelogenous leukemia and 1.3% (1/77) of classical myeloproliferative neoplasms. Cohesin-mutated leukemic cells showed reduced amounts of chromatin-bound cohesin components, suggesting a substantial loss of cohesin binding sites on chromatin. The growth of leukemic cell lines harboring a mutation in RAD21 (Kasumi-1 cells) or having severely reduced expression of RAD21 and STAG2 (MOLM-13 cells) was suppressed by forced expression of wild-type RAD21 and wild-type RAD21 and STAG2, respectively. These findings suggest a role for compromised cohesin functions in myeloid leukemogenesis.


Oncogene | 2005

Two subclasses of lung squamous cell carcinoma with different gene expression profiles and prognosis identified by hierarchical clustering and non-negative matrix factorization

Kentaro Inamura; Takeshi Fujiwara; Yujin Hoshida; Takayuki Isagawa; Michael H Jones; Carl Virtanen; Miyuki Shimane; Yukitoshi Satoh; Sakae Okumura; Ken Nakagawa; Eiju Tsuchiya; Shumpei Ishikawa; Hiroyuki Aburatani; Hitoshi Nomura; Yuichi Ishikawa

Current clinical and histopathological criteria used to define lung squamous cell carcinomas (SCCs) are insufficient to predict clinical outcome. To make a clinically useful classification by gene expression profiling, we used a 40 386 element cDNA microarray to analyse 48 SCC, nine adenocarcinoma, and 30 normal lung samples. Initial analysis by hierarchical clustering (HC) allowed division of SCCs into two distinct subclasses. An additional independent round of HC induced a similar partition and consensus clustering with the non-negative matrix factorization approach indicated the robustness of this classification. Kaplan–Meier analysis with the log-rank test pointed to a nonsignificant difference in survival (P=0.071), but the likelihood of survival to 6 years was significantly different between the two groups (40.5 vs 81.8%, P=0.014, Z-test). Biological process categories characteristic for each subclass were identified statistically and upregulation of cell-proliferation-related genes was evident in the subclass with poor prognosis. In the subclass with better survival, genes involved in differentiated intracellular functions, such as the MAPKKK cascade, ceramide metabolism, or regulation of transcription, were upregulated. This work represents an important step toward the identification of clinically useful classification for lung SCC.


BMC Bioinformatics | 2006

CARAT: A novel method for allelic detection of DNA copy number changes using high density oligonucleotide arrays

Jing-Jing Huang; Wen Wei; Joyce Chen; Jane Zhang; Guoying Liu; Xiaojun Di; Rui Mei; Shumpei Ishikawa; Hiroyuki Aburatani; Keith W. Jones; Michael H. Shapero

BackgroundDNA copy number alterations are one of the main characteristics of the cancer cell karyotype and can contribute to the complex phenotype of these cells. These alterations can lead to gains in cellular oncogenes as well as losses in tumor suppressor genes and can span small intervals as well as involve entire chromosomes. The ability to accurately detect these changes is central to understanding how they impact the biology of the cell.ResultsWe describe a novel algorithm called CARAT (C opy Number A nalysis with R egression A nd T ree) that uses probe intensity information to infer copy number in an allele-specific manner from high density DNA oligonuceotide arrays designed to genotype over 100, 000 SNPs. Total and allele-specific copy number estimations using CARAT are independently evaluated for a subset of SNPs using quantitative PCR and allelic TaqMan reactions with several human breast cancer cell lines. The sensitivity and specificity of the algorithm are characterized using DNA samples containing differing numbers of X chromosomes as well as a test set of normal individuals. Results from the algorithm show a high degree of agreement with results from independent verification methods.ConclusionOverall, CARAT automatically detects regions with copy number variations and assigns a significance score to each alteration as well as generating allele-specific output. When coupled with SNP genotype calls from the same array, CARAT provides additional detail into the structure of genome wide alterations that can contribute to allelic imbalance.

Collaboration


Dive into the Shumpei Ishikawa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daisuke Komura

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Toshiro Niki

Jichi Medical University

View shared research outputs
Top Co-Authors

Avatar

Hiroto Katoh

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge