Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shun-Cheng Wu is active.

Publication


Featured researches published by Shun-Cheng Wu.


Biomaterials | 2010

Enhancement of chondrogenesis of human adipose derived stem cells in a hyaluronan-enriched microenvironment

Shun-Cheng Wu; Je-Ken Chang; Chih-Kuang Wang; Gwo-Jaw Wang; Mei-Ling Ho

Microenvironment plays a critical role in guiding stem cell differentiation. We investigated the enhancing effect of a hyaluronan (HA)-enriched microenvironment on human adipose derived stem cell (hADSC) chondrogenesis for articular cartilage tissue engineering. The hADSCs were obtained from patients undergoing hip replacement. HA-coated wells and HA-modified poly-(lactic-co-glycolic acid) (HA/PLGA) scaffolds were used as the HA-enriched microenvironment. The mRNA expressions of chondrogenic (SOX-9, aggrecan and collagen type II), fibrocartilage (collagen type I), and hypertrophic (collagen type X) marker genes were quantified by real-time polymerase chain reaction. Sulfated glycosaminoglycan (sGAG) deposition was detected by Alcian blue, safranin-O staining, and dimethylmethylene blue (DMMB) assays. Localized collagen type II was detected by immunohistochemistry. The hADSCs cultured in HA-coated wells (0.005-0.5 mg/cm(2)) showed enhanced aggregation and mRNA expressions (SOX-9, collagen type II, and aggrecan) after 24h, and sGAG content was also significantly increased after 9 days of culture. The HA-modified PLGA did not change the cell adherence and viability of hADSCs. The mRNA expressions of chondrogenic marker genes were significantly enhanced in hADSCs cultured in HA/PLGA rather than those cultured in the PLGA scaffold after 1, 3, and 5 days of culture. The hADSCs cultured in HA/PLGA produced higher levels of sGAG and collagen type II, compared to those in the PLGA scaffold after 4 weeks of cultures. Our results suggest that HA-enriched microenvironment induces chondrogenesis in hADSCs, which may be beneficial in articular cartilage tissue engineering.


Arthritis & Rheumatism | 2009

Parathyroid hormone 1-34 inhibits terminal differentiation of human articular chondrocytes and osteoarthritis progression in rats.

Je-Ken Chang; Ling-Hwa Chang; Shao-Hung Hung; Shun-Cheng Wu; Hsin-Yi Lee; Yi-Shan Lin; Chung-Hwan Chen; Yin-Chih Fu; Gwo-Jaw Wang; Mei-Ling Ho

OBJECTIVE Parathyroid hormone 1-34 (PTH[1-34]), a parathyroid hormone analog, shares the same receptor, PTH receptor 1, with parathyroid hormone-related peptide (PTHrP). This study was undertaken to address the hypothesis that PTH(1-34) inhibits terminal differentiation of articular chondrocytes and in turn suppresses the progression of osteoarthritis (OA). METHODS We studied the effect of PTH(1-34) on human articular chondrocytes with azacytidine (azaC)-induced terminal differentiation in vitro and on papain-induced OA in the knee joints of rats. In the in vitro study, we measured the levels of messenger RNA for SOX9, aggrecan, type II collagen, type X collagen, alkaline phosphatase (AP), Indian hedgehog (IHH), Bcl-2, and Bax by real-time polymerase chain reaction, levels of glycosaminoglycan (GAG) by dimethylmethylene blue assay, and rate of apoptosis by TUNEL staining. In the in vivo study, we evaluated the histologic changes in GAG, type II collagen, type X collagen, and chondrocyte apoptosis in the articular cartilage of rat knees. RESULTS AzaC induced terminal differentiation of human chondrocytes, including down-regulation of aggrecan, type II collagen, and GAG and up-regulation of type X collagen, alkaline phosphatase, and IHH. Apoptosis was reversed by 3-10 days of treatment with 10 nM PTH(1-34). SOX9 expression was not changed by either azaC or PTH(1-34) treatment. Bcl-2 and Bax were up-regulated on day 10 and day 14, respectively, after azaC induction of terminal differentiation, but PTH(1-34) treatment did not reverse this effect. Furthermore, PTH(1-34) treatment reversed papain-induced OA changes (decreasing GAG and type II collagen, and increasing type X collagen and chondrocyte apoptosis) in the knee joints of rats. CONCLUSION Our findings indicate that PTH(1-34) inhibits the terminal differentiation of human articular chondrocytes in vitro and inhibits progression of OA in rats in vivo, and may be used to treat OA.


Journal of Applied Physiology | 2013

Hyaluronan initiates chondrogenesis mainly via CD44 in human adipose-derived stem cells

Shun-Cheng Wu; Chung-Hwan Chen; Je-Ken Chang; Yin-Chih Fu; Chih-Kuang Wang; Rajalakshmanan Eswaramoorthy; Yi-Shan Lin; Yao-Hsien Wang; Sung-Yen Lin; Gwo-Jaw Wang; Mei-Ling Ho

Cell-matrix adhesion is one of the important interactions that regulates stem cell survival, self-renewal, and differentiation. Our previous report (Wu SC, Chang JK, Wang CK, Wang GJ, Ho ML. Biomaterials 31: 631-640, 2010) indicated that a microenvironment enriched with hyaluronan (HA) initiated and enhanced chondrogenesis in human adipose-derived stem cells (hADSCs). We further hypothesize that HA-induced chondrogenesis in hADSCs is mainly due to the interaction of HA and CD44 (HA-CD44), a cell surface receptor of HA. The HA-CD44 interaction was tested by examining the mRNA expression of hyaluronidase-1 (Hyal-1) and chondrogenic marker genes (SOX-9, collagen type II, and aggrecan) in hADSCs cultured on HA-coated wells. Cartilaginous matrix formation, sulfated glycosaminoglycan, and collagen productions by hADSCs affected by HA-CD44 interaction were tested in a three-dimensional fibrin hydrogel. About 99.9% of hADSCs possess CD44. The mRNA expressions of Hyal-1 and chondrogenic marker genes were upregulated by HA in hADSCs on HA-coated wells. Blocking HA-CD44 interaction by anti-CD44 antibody completely inhibited Hyal-1 expression and reduced chondrogenic marker gene expression, which indicates that HA-induced chondrogenesis in hADSCs mainly acts through HA-CD44 interaction. A 2-h preincubation and coculture of cells with HA in hydrogel (HA/fibrin hydrogel) not only assisted in hADSC survival, but also enhanced expression of Hyal-1 and chondrogenic marker genes. Higher levels of sulfated glycosaminoglycan and total collagen were also found in HA/fibrin hydrogel group. Immunocytochemistry showed more collagen type II, but less collagen type X, in HA/fibrin than in fibrin hydrogels. Our results indicate that signaling triggered by HA-CD44 interaction significantly contributes to HA-induced chondrogenesis and may be applied to adipose-derived stem cell-based cartilage regeneration.


Acta Biomaterialia | 2012

Sustained release of PTH(1-34) from PLGA microspheres suppresses osteoarthritis progression in rats.

Rajalakshmanan Eswaramoorthy; Chia-Chi Chang; Shun-Cheng Wu; Gwo-Jaw Wang; Je-Ken Chang; Mei-Ling Ho

We previously reported that PTH(1-34) inhibits the terminal differentiation of articular chondrocytes and, in turn, suppresses the progression of osteoarthritis (OA). However, this treatment requires an injection of PTH(1-34) once every 3 days over the treatment period. In this study, we studied the effect of sustained administration of PTH(1-34) in a papain-induced OA rat model. We developed an effective controlled-release system for prolonging the treatment duration of an intra-articular injection for OA treatment in rats. The effects of released PTH(1-34) from PLGA(65:35)-encapsulated PTH(1-34) microspheres (PTH/PLGA) on papain-induced OA in rat knees were studied. Microsphere morphology was observed in vitro by scanning electron microscopy, and microsphere size was determined with a particle size analyzer. The PTH(1-34) encapsulation efficiency and release profile, as well as the toxicity of PTH/PLGA, were examined. The bioactivity of released PTH(1-34) was tested by examining cAMP levels in MC3T3E1 cells. In vivo, we evaluated the changes of localized GAG, Col II, and Col X in the articular cartilage of rat knees. Our results demonstrated that the surface of the PLGA microspheres was smooth, and the size of the microspheres was in the range of 51-127 μm. PTH/PLGA microspheres sustainably released PTH(1-34) for 19 days with a concentration range of 0.01-100 nM that covered the expected concentration of 10nM at 37°C. The cAMP levels of MC3T3E1 cells were elevated in the response to released PTH(1-34) from PTH/PLGA microspheres, indicating that the released PTH(1-34) is bioactive. Most importantly, intra-articular treatment with either PTH(1-34) (0.1-100 nM) 3 days/injection or PTH/PLGA microspheres (15 days/injection) for 5 weeks revealed the similar effect on suppressing papain-induced OA changes (decreasing GAG and Col II and increasing Col X) in rat knee cartilage. The effect of PTH/PLGA microspheres on suppressing OA progression was similar to that of a once-every-three-day injection of PTH(1-34), indicating that both the sustained and intermittent action of PTH(1-34) effectively suppress OA progression. The developed PLGA microspheres with sustained release and long-term effect may be potent carriers for PTH(1-34) used to treat early OA.


Journal of Applied Physiology | 2013

Electromagnetic fields enhance chondrogenesis of human adipose-derived stem cells in a chondrogenic microenvironment in vitro.

Chung-Hwan Chen; Yi-Shan Lin; Yin-Chih Fu; Chih-Kuang Wang; Shun-Cheng Wu; Gwo-Jaw Wang; Rajalakshmanan Eswaramoorthy; Yan-Hsiung Wang; Chau-Zen Wang; Yao-Hsien Wang; Sung-Yen Lin; Je-Ken Chang; Mei-Ling Ho

We tested the hypothesis that electromagnetic field (EMF) stimulation enhances chondrogenesis in human adipose-derived stem cells (ADSCs) in a chondrogenic microenvironment. A two-dimensional hyaluronan (HA)-coated well (2D-HA) and a three-dimensional pellet culture system (3D-pellet) were used as chondrogenic microenvironments. The ADSCs were cultured in 2D-HA or 3D-pellet, and then treated with clinical-use pulse electromagnetic field (PEMF) or the innovative single-pulse electromagnetic field (SPEMF) stimulation. The cytotoxicity, cell viability, and chondrogenic and osteogenic differentiations were analyzed after PEMF or SPEMF treatment. The modules of PEMF and SPEMF stimulations used in this study did not cause cytotoxicity or alter cell viability in ADSCs. Both PEMF and SPEMF enhanced the chondrogenic gene expression (SOX-9, collagen type II, and aggrecan) of ADSCs cultured in 2D-HA and 3D-pellet. The expressions of bone matrix genes (osteocalcin and collagen type I) of ADSCs were not changed after SPEMF treatment in 2D-HA and 3D-pellet; however, they were enhanced by PEMF treatment. Both PEMF and SPEMF increased the cartilaginous matrix (sulfated glycosaminoglycan) deposition of ADSCs. However, PEMF treatment also increased mineralization of ADSCs, but SPEMF treatment did not. Both PEMF and SPEMF enhanced chondrogenic differentiation of ADSCs cultured in a chondrogenic microenvironment. SPEMF treatment enhanced ADSC chondrogenesis, but not osteogenesis, when the cells were cultured in a chondrogenic microenvironment. However, PEMF enhanced both osteogenesis and chondrogenesis under the same conditions. Thus the combination of a chondrogenic microenvironment with SPEMF stimulation can promote chondrogenic differentiation of ADSCs and may be applicable to articular cartilage tissue engineering.


Cell Biology International | 2006

A novel terminal differentiation model of human articular chondrocytes in three-dimensional cultures mimicking chondrocytic changes in osteoarthritis

Mei-Ling Ho; Je-Ken Chang; Shun-Cheng Wu; Ya-Hui Chung; Chung-Hwan Chen; Shao-Hung Hung; Gwo-Jaw Wang

This study establishes a cell culture model mimicking the terminal differentiation occurring in osteoarthritic chondrocytes. Normal articular chondrocytes obtained from human knees treated with 5‐azacytidine (Aza‐C) were harvested 3, 7 and 14 days after treatment. Phenotypic and genetic changes of articular chondrocytes were detected. The results show that mRNA expression of collagen type II, a marker for normal functional articular chondrocytes, was significantly decreased after Aza‐C treatment in comparison to the control cultures, while those of collagen type X and ALP, markers for hypertrophic chondrocytes, were significantly increased. Cell size and apoptotic rate of articular chondrocytes showed significant increases compared to the control after 14 days of Aza‐C treatment. Terminal differentiation is shown by this model of three‐dimensional cultured human articular chondrocytes, which could apply to the studies of the cellular mechanisms of osteoarthritis.


Journal of Biomedical Materials Research Part B | 2018

The stiffness of a crosslinked hyaluronan hydrogel affects its chondro‐induction activity on hADSCs

Benjamin Teong; Shun-Cheng Wu; Chien-Mei Chang; Jhen-Wei Chen; Hui-Ting Chen; Chung-Hwan Chen; Je-Ken Chang; Mei-Ling Ho

Matrix stiffness plays an important role in stem cell differentiation. This study reports the synthesis of methacrylated hyaluronan (MeHA) with different degrees of methacrylation, ranging from 15 to 140% per disaccharide unit, which corresponds to a matrix stiffness ranging from 1.5 to 8 KPa. The swelling ratio was inversely proportional to the matrix stiffness, but the water content remained constant at >97% of the hydrogel mass. A fibril-like surface morphology and larger pore size were observed in lyophilized MeHA hydrogel with a lower stiffness. The matrix stiffness also affected the degradability of the MeHA hydrogel, where softer MeHA hydrogels (MeHA15 and MeHA30 ) were completely degraded within 6 days and a stiffer MeHA hydrogel (MeHA140 ) was able to retain ∼25% of its initial mass after 30 days. Subsequently, the crosslinked MeHA hydrogel was used as a scaffold to encapsulate human adipose-derived stem cells (hADSCs). The embedded cells remained viable and expressed ∼11-fold higher levels of aggrecan and 42-fold higher levels of collagen type II in MeHA140 compared with ADSCs cultured in HA-coated wells. In addition, cells grown in MeHA140 exhibited the highest rates of glycosaminoglycan and collagen type II synthesis of ∼5 ng/DNA and 0.4 ng/DNA, respectively. Immunofluorescence staining showed an increase of collagen type II synthesis in MeHA65 , MeHA85 and MeHA140 . This study showed that the matrix stiffness of a hydrogel can be modulated by the degree of methacrylation, thus affecting the efficacy of chondrogenesis in hADSCs.


American Journal of Physiology-cell Physiology | 2015

Suppression of discoidin domain receptor 1 expression enhances the chondrogenesis of adipose-derived stem cells

Shun-Cheng Wu; Hsu-Feng Hsiao; Mei-Ling Ho; Yung-Li Hung; Je-Ken Chang; Gwo-Jaw Wang; Chau-Zen Wang

Effectively directing the chondrogenesis of adipose-derived stem cells (ADSCs) to engineer articular cartilage represents an important challenge in ADSC-based articular cartilage tissue engineering. The discoidin domain receptor 1 (DDR1) has been shown to affect cartilage homeostasis; however, little is known about the roles of DDR1 in ADSC chondrogenesis. In this study, we used the three-dimensional culture pellet culture model system with chondrogenic induction to investigate the roles of DDR1 in the chondrogenic differentiation of human ADSCs (hADSCs). Real-time polymerase chain reaction and Western blot were used to detect the expression of DDRs and chondrogenic genes. Sulfated glycosaminoglycan (sGAG) was detected by Alcian blue and dimethylmethylene blue (DMMB) assays. Terminal deoxy-nucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining was used to assess cell death. During the chondrogenesis of hADSCs, the expression of DDR1 but not DDR2 was significantly elevated. The depletion of DDR1 expression in hADSCs using short hairpin RNA increased the expression of chondrogenic genes (SOX-9, collagen type II, and aggrecan) and cartilaginous matrix deposition (collagen type II and sGAG) and only slightly increased cell death (2-8%). DDR1 overexpression in hADSCs decreased the expression of chondrogenic genes (SOX-9, collagen type II, and aggrecan) and sGAG and enhanced hADSC survival. Moreover, DDR1-depleted hADSCs showed decreased expression of the terminal differentiation genes runt-related transcription factor 2 (Runx2) and matrix metalloproteinase 13 (MMP-13). These results suggest that DDR1 suppression may enhance ADSC chondrogenesis by enhancing the expression of chondrogenic genes and cartilaginous matrix deposition. We proposed that the suppression of DDR1 in ADSCs may be a candidate strategy of genetic modification to optimize ADSC-based articular cartilage tissue engineering.


Journal of Applied Physiology | 2018

Parathyroid hormone-(1–34) ameliorated knee osteoarthritis in rats via autophagy

Chung-Hwan Chen; Mei-Ling Ho; Ling-hua Chang; Lin Kang; Yi-Shan Lin; Sung-Yen Lin; Shun-Cheng Wu; Je-Ken Chang

Anterior cruciate ligament (ACL) tear can lead to osteoarthritis (OA). However, parathyroid hormone (PTH)-(1-34) was found to alleviate OA progression in a papain-induced OA model. Autophagy is a protective mechanism in normal cartilage, and its aging-related loss is linked with chondrocyte death and OA. Thus we examined the roles of autophagy in PTH treatment in OA after ACL transection (ACLT). Thirty-six rats were randomized into three groups: control group, ACLT-induced OA (OA) group, and OA with intra-articular PTH-(1-34) treatment (OA+PTH) group. Weight-bearing and treadmill tests were evaluated. Cartilage matrix was determined by a histological evaluation of glycosaminoglycan (GAG), Osteoarthritis Research Society International (OARSI) score, chondrocyte apoptosis, and immunohistochemistry. Rats in the OA group had significantly decreased weight bearing and running endurance. The histological results indicated that GAG, collagen type II, and chondrocyte autophagy had decreased but that the OARSI score, terminal differentiation markers (collagen type X and Indian hedgehog), and chondrocyte apoptosis had increased in the OA group. Additionally, PTH-(1-34) treatment significantly improved weight bearing and treadmill endurance, preserved GAG and collagen type II, and reduced the OARSI score and terminal differentiation markers. Finally, PTH-(1-34) ameliorated chondrocyte apoptosis by regulating the expression of autophagy-related proteins, through reducing mechanistic target of rapamycin (mTOR) and p62 and enhancing microtubule-associated protein-1 light chain 3 (LC3) and beclin-1. Reconstructive surgery after ACL rupture cannot prevent OA occurrence. Intra-articular PTH-(1-34) treatment can alleviate OA progression after ACLT and histological molecular changes. Possible mechanisms are reducing chondrocyte terminal differentiation and apoptosis, with increasing autophagy. NEW & NOTEWORTHY Anterior cruciate ligament (ACL) tear can lead to osteoarthritis (OA). Intra-articular parathyroid hormone (PTH)-(1-34) significantly improved weight bearing and treadmill endurance, preserved glycosaminoglycan and collagen type II, and reduced Osteoarthritis Research Society International (OARSI) score and terminal differentiation. Finally, PTH-(1-34) ameliorated chondrocyte apoptosis by regulating the expression of autophagy-related proteins, through reducing mechanistic target of rapamycin (mTOR) and p62 and enhancing microtubule-associated protein-1 light chain 3 (LC3) and beclin-1. PTH-(1-34) can alleviate OA progression after ACL transection. Possible mechanisms are reducing chondrocyte terminal differentiation and apoptosis, with increasing autophagy.


Acta Biomaterialia | 2018

Hyaluronan size alters chondrogenesis of adipose-derived stem cells via the CD44/ERK/SOX-9 pathway

Shun-Cheng Wu; Chung-Hwan Chen; Jyun-Ya Wang; Yi-Shan Lin; Je-Ken Chang; Mei-Ling Ho

Hyaluronan (HA) is a natural linear polymer that is one of the main types of extracellular matrix during the early stage of chondrogenesis. We found that the chondrogenesis of adipose-derived stem cells (ADSCs) can be initiated and promoted by the application of HA to mimic the chondrogenic niche. The aim of this study is to investigate the optimal HA molecular weight (Mw) for chondrogenesis of ADSCs and the detailed mechanism. In this study, we investigated the relationships among HA Mw, CD44 clustering, and the extracellular signal-regulated kinase (ERK)/SOX-9 pathway during chondrogenesis of ADSCs. Human ADSCs (hADSCs) and rabbit ADSCs (rADSCs) were isolated and expanded. Chondrogenesis was induced in rADSCs by culturing cells in HA-coated wells (HA Mw: 80 kDa, 600 kDa and 2000 kDa) and evaluated by examining cell aggregation, chondrogenic gene expression (collagen type II and aggrecan) and sulfated glycosaminoglycan (sGAG) deposition in vitro. Cartilaginous tissue formation in vivo was confirmed by implanting HA/rADSCs into joint cavities. CD44 clustering, ERK phosphorylation, SOX-9 expression and SOX-9 phosphorylation in cultured hADSCs were further evaluated. Isolated and expanded rADSCs showed multilineage potential and anchorage-independent growth properties. Cell aggregation, chondrogenic gene expression, and sGAG deposition increased with increasing HA Mw in rADSCs. The 2000 kDa HA had the most pronounced chondrogenic effect on rADSCs in vitro, and implanted 2000 kDa HA/rADSCs exhibited marked cartilaginous tissue formation in vivo. CD44 clustering and cell aggregation of hADSCs were enhanced by an increase in HA Mw. In addition, higher HA Mws further enhanced CD44 clustering, ERK phosphorylation, and SOX-9 expression and phosphorylation in hADSCs. Inhibiting CD44 clustering in hADSCs reduced HA-induced chondrogenic gene expression. Inhibiting ERK phosphorylation also simultaneously attenuated HA-induced SOX-9 expression and phosphorylation and chondrogenic gene expression in hADSCs. Our results indicate that HA initiates ADSC chondrogenesis and that higher Mw HAs exhibit stronger effects, with 2000 kDa HA having the strongest effect. These effects may be mediated through increased CD44 clustering and the ERK/SOX-9 signaling pathway. STATEMENT OF SIGNIFICANCE HA-based biomaterials have been studied in stem cell-based articular cartilage tissue engineering. However, little is known about the optimal HA size for stem cell chondrogenesis and the mechanism of how HA size modulates stem cell chondrogenesis. Accordingly, we used HAs with various Mws (80-2000 kDa) as culture substrates and tested their chondrogenic effect on ADSCs. Our results demonstrated that HAs with a Mw of 2000 kDa showed the optimal effect for chondrogenesis of ADSCs. Moreover, we found that HA size can regulate ADSC chondrogenesis via the CD44/ERK/SOX-9 pathway. This finding provides new information regarding the biochemical control of chondrogenesis by HA substrates that may add value to the development of HA-based biomaterials for articular cartilage regeneration.

Collaboration


Dive into the Shun-Cheng Wu's collaboration.

Top Co-Authors

Avatar

Mei-Ling Ho

Kaohsiung Medical University

View shared research outputs
Top Co-Authors

Avatar

Je-Ken Chang

Kaohsiung Medical University

View shared research outputs
Top Co-Authors

Avatar

Gwo-Jaw Wang

Kaohsiung Medical University

View shared research outputs
Top Co-Authors

Avatar

Chung-Hwan Chen

Kaohsiung Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yin-Chih Fu

Kaohsiung Medical University

View shared research outputs
Top Co-Authors

Avatar

Chih-Kuang Wang

Kaohsiung Medical University

View shared research outputs
Top Co-Authors

Avatar

Chau-Zen Wang

Kaohsiung Medical University

View shared research outputs
Top Co-Authors

Avatar

Yi-Shan Lin

Kaohsiung Medical University

View shared research outputs
Top Co-Authors

Avatar

Yao-Hsien Wang

Kaohsiung Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge