Shun-Hsiang Chan
Chang Gung University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shun-Hsiang Chan.
Scientific Reports | 2017
Ming-Chung Wu; Ching-Hsiang Chen; Wei-Kang Huang; Kai-Chi Hsiao; Ting-Han Lin; Shun-Hsiang Chan; Po-Yeh Wu; Chun-Fu Lu; Yin-Hsuan Chang; Tz-Feng Lin; Kai-Hsiang Hsu; Jen-Fu Hsu; Kun-Mu Lee; Jing-Jong Shyue; Krisztian Kordas; Wei-Fang Su
Hydrogenated titanium dioxide has attracted intensive research interests in pollutant removal applications due to its high photocatalytic activity. Herein, we demonstrate hydrogenated TiO2 nanofibers (H:TiO2 NFs) with a core-shell structure prepared by the hydrothermal synthesis and subsequent heat treatment in hydrogen flow. H:TiO2 NFs has excellent solar light absorption and photogenerated charge formation behavior as confirmed by optical absorbance, photo-Kelvin force probe microscopy and photoinduced charge carrier dynamics analyses. Photodegradation of various organic dyes such as methyl orange, rhodamine 6G and brilliant green is shown to take place with significantly higher rates on our novel catalyst than on pristine TiO2 nanofibers and commercial nanoparticle based photocatalytic materials, which is attributed to surface defects (oxygen vacancy and Ti3+ interstitial defect) on the hydrogen treated surface. We propose three properties/mechanisms responsible for the enhanced photocatalytic activity, which are: (1) improved absorbance allowing for increased exciton generation, (2) highly crystalline anatase TiO2 that promotes fast charge transport rate, and (3) decreased charge recombination caused by the nanoscopic Schottky junctions at the interface of pristine core and hydrogenated shell thus promoting long-life surface charges. The developed H:TiO2 NFs can be helpful for future high performance photocatalysts in environmental applications.
Journal of Materials Chemistry | 2017
Shun-Hsiang Chan; Ming-Chung Wu; Kun-Mu Lee; Wei-Cheng Chen; Tzu-Hao Lin; Wei-Fang Su
Organic–inorganic lead halide perovskite solar cells are considered as one of the most promising technologies for future photovoltaics because they show high power conversion efficiency (PCE) and can be fabricated through a simple solution process. Non-toxic alkaline-earth metal cations are suitable candidates to replace toxic lead in perovskite because they maintain the charge balance in perovskite and some of them meet the tolerance factor of Goldschmidts rule. We investigated four kinds of alkaline-earth metal cations (Mg2+, Ca2+, Sr2+, and Ba2+) to replace lead cations partially. Among these four alkaline-earth metals, the Ba2+ is most suitable for Pb2+ replacement in perovskite films and exhibits the best power conversion efficiency. Furthermore, we systematically studied the crystal structure, absorption behavior and surface morphology of Ba2+-doped perovskite films with different doping levels. The relationship between the charge carrier dynamics and Ba2+ concentration was evaluated by the time-resolved photoluminescence (TRPL) technique. The Ba2+-doped perovskite films that can be processed in the environment containing moisture (1.0% relative humidity) are stable. At the optimal 3.0 mol% Ba2+ replacement, the PCE of the fabricated solar cell is increased from 11.8 to 14.0%, and the PCE of champion devices is as high as 14.9% with increased storage stability.
Applied Surface Science | 2018
Ming-Chung Wu; Wei-Cheng Chen; Shun-Hsiang Chan; Wei-Fang Su
The search for large band gap systems with dissipationless edge states is essential to developing materials that function under a wide range of temperatures. Two-dimensional (2D) topological insulators (TIs) have recently attracted significant attention due to their dissipationless transport, robust properties and excellent compatibility with device integration. However, a major barrier of 2D TIs is their small bulk band gap, which allows for applications only in extremely low temperatures. In this work, first principle calculations were used to analyze the geometric, electronic, and topological properties of PbC2X and BiC2X (X = H, Cl, F, Br, I) compounds. The band gap values are remarkably large, ranging from 0.79eV to 0.99eV. The nanoribbons of these compounds exhibited nontrivial topological order in the simulation, thus proving ethynyl-derivative functionalized Pb and Bi films to be new classes of giant band gap 2D TIs. In addition, these findings indicate that chemical functionalization with ethynyl-derivatives is an effective method to tune the band gap and preserve the nontrivial topological order. These novel materials that are applicable at both room temperature and high temperatures open the door to a new generation of electronics.
Functional Materials Letters | 2015
Ming-Chung Wu; Shun-Hsiang Chan; Ting-Han Lin
Many organic/inorganic nanocomposites have been fabricated into fibrous materials using electrospinning techniques, because electrospinning processes have many attractive advantages and the ability to produce relatively large-scale continuous films. In this study, the polyvinyl alcohol (PVA)/silk/titanium dioxide (TiO2) nanocomposite self-cleaning textiles were successfully produced using electrospinning technique. After optimizing electrospinning conditions, we successfully obtained the PVA/silk/TiO2 nanocomposite fibers with average diameter of ∼220 nm and TiO2 concentration can be as high as 18.0 wt.%. For the case of the PVA/silk/TiO2 nanocomposite textile, the color of brilliant green coated on the textile surface changed from the initial green color to colorless after ultraviolet (UV) irradiation. Because of its worthy photocatalytic performance, the developed PVA/silk/TiO2 nanocomposite materials in this study will be beneficial for the design and fabrication of multifunctional fibers and textiles.
Scientific Reports | 2017
Rajat Subhra Karmakar; Yu-Jen Lu; Yi Fu; Kuo-Chen Wei; Shun-Hsiang Chan; Ming-Chung Wu; Jyh-Wei Lee; Tzu-Kang Lin; Jer-Chyi Wang
In this study, the cross-talk effects and the basic piezoresistive characteristics of gold nanoparticle (Au-NP) incorporated poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) pressure sensing 2 × 2 arrays are investigated using a cross-point electrode (CPE) structure. Transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS) mappings were carried out to confirm the incorporation of Au-NPs in the PEDOT:PSS films. A solution mixing process was employed to incorporate the nanoparticles. When the diameter of the Au-NPs incorporated in the PEDOT:PSS films (Au-NPs/PEDOT:PSS) was 20 nm, the piezoresistive pressure sensing 2 × 2 arrays were almost immune to cross-talk effects, which enhances the pressure sensing accuracy of the array. The Au-NPs render the PEDOT:PSS films more resilient. This is confirmed by the high plastic resistance values using a nanoindenter, which reduce the interference between the active and passive cells. When the size of the Au-NPs is more than 20 nm, a significant cross-talk effect is observed in the pressure sensing arrays as a result of the high conductivity of the Au-NPs/PEDOT:PSS films with large Au-NPs. With the incorporation of optimally sized Au-NPs, the PEDOT:PSS piezoresistive pressure sensing arrays can be promising candidates for future high-resolution fingerprint identification system with multiple-electrode array structures.
Journal of Materials Chemistry | 2018
Ming-Chung Wu; Shun-Hsiang Chan; Kun-Mu Lee; Shihhsuan Chen; Meng-Huan Jao; Yang-Fang Chen; Wei-Fang Su
Lead halide perovskite-structured solar cells (PSCs) have drawn great attention due to a rapid improvement in their photoelectric conversion efficiency in recent years. In this study, we have enhanced photovoltaic performance by using mesoscopic zinc-doped TiO2 (meso-Zn:TiO2) as the electron extraction layer. Zn:TiO2 nanoparticles (Zn:TiO2 NPs) with various zinc doping levels were synthesized by combining sol–gel and hydrothermal methods. The synthesized Zn:TiO2 NPs were used to fabricate electron extraction layers by a screen-printing method. We systematically investigated the surface morphology, crystal structure, contact angle, charge carrier dynamics, electron mobility, and electrical conductivity of various meso-Zn:TiO2. Furthermore, photo-assisted Kelvin probe force microscopy (KPFM) was used to analyze the surface potential of perovskite films coated with various meso-Zn:TiO2 to understand the electron extraction behavior under the illumination of light at various wavelengths. Moreover, the energy levels of various meso-Zn:TiO2 were estimated by ultraviolet photoelectron spectroscopy (UPS) and UV-vis absorption spectroscopy. We discovered that the 5.0 mol% meso-Zn:TiO2 exhibited the optimal band alignment with perovskite. Finally, the average power conversion efficiency (PCE) of PSCs with meso-Zn:TiO2 was enhanced from 13.1 to 16.8%, and such fabricated PSC yielded a champion PCE of 18.3%.
Solar Energy Materials and Solar Cells | 2016
Ming-Chung Wu; Shun-Hsiang Chan; Meng-Huan Jao; Wei-Fang Su
Applied Surface Science | 2018
Ming-Chung Wu; Kai-Chi Hsiao; Yin-Hsuan Chang; Shun-Hsiang Chan
Journal of The Taiwan Institute of Chemical Engineers | 2017
Ming-Chung Wu; Shun-Hsiang Chan; Tz-Feng Lin; Chun-Fu Lu; Wei-Fang Su
Journal of The Taiwan Institute of Chemical Engineers | 2017
Ming-Chung Wu; Tzu-Hao Lin; Shun-Hsiang Chan; Wei-Fang Su