Shun Hua Chen
National Cheng Kung University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shun Hua Chen.
Journal of Biomedical Science | 2001
Huan Yao Lei; Trai Ming Yeh; Hsiao Sheng Liu; Yee-Shin Lin; Shun Hua Chen; Ching Chuan Liu
Dengue virus infection causes dengue fever (DF), dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS), whose pathogeneses are not clearly understood. Current hypotheses of antibody-dependent enhancement, virus virulence, and IFN-gamma/TNFalpha-mediated immunopathogenesis are insufficient to explain clinical manifestations of DHF/DSS such as thrombocytopenia and hemoconcentration. Dengue virus infection induces transient immune aberrant activation of CD4/CD8 ratio inversion and cytokine overproduction, and infection of endothelial cells and hepatocytes causes apoptosis and dysfunction of these cells. The coagulation and fibrinolysis systems are also activated after dengue virus infection. We propose a new hypothesis for the immunopathogenesis for dengue virus infection. The aberrant immune responses not only impair the immune response to clear the virus, but also result in overproduction of cytokines that affect monocytes, endothelial cells, and hepatocytes. Platelets are destroyed by crossreactive anti-platelet autoantibodies. Dengue-virus-induced vasculopathy and coagulopathy must be involved in the pathogenesis of hemorrhage, and the unbalance between coagulation and fibrinolysis activation increases the likelihood of severe hemorrhage in DHF/DSS. Hemostasis is maintained unless the dysregulation of coagulation and fibrinolysis persists. The overproduced IL-6 might play a crucial role in the enhanced production of anti-platelet or anti-endothelial cell autoantibodies, elevated levels of tPA, as well as a deficiency in coagulation. Capillary leakage is triggered by the dengue virus itself or by antibodies to its antigens. This immunopathogenesis of DHF/DSS can account for specific characteristics of clinical, pathologic, and epidemiological observations in dengue virus infection.
Virology | 2008
Ying Ray Lee; Huan Yao Lei; Ming Tao Liu; Jen Ren Wang; Shun Hua Chen; Ya Fen Jiang-Shieh; Yee-Shin Lin; Trai Ming Yeh; Ching Chuan Liu; Hsiao Sheng Liu
Abstract Autophagy is a cellular response against stresses which include the infection of viruses and bacteria. We unravel that Dengue virus-2 (DV2) can trigger autophagic process in various infected cell lines demonstrated by GFP-LC3 dot formation and increased LC3-II formation. Autophagosome formation was also observed under the transmission electron microscope. DV2-induced autophagy further enhances the titers of extracellular and intracellular viruses indicating that autophagy can promote viral replication in the infected cells. Moreover, our data show that ATG5 protein is required to execute DV2-induced autophagy. All together, we are the first to demonstrate that DV can activate autophagic machinery that is favorable for viral replication.
Journal of Virology | 2004
Ya Fang Wang; Chun Ting Chou; Huan Yao Lei; Ching Chuan Liu; Shih Min Wang; Jing Jou Yan; Ih-Jen Su; Jen Reng Wang; Trai Ming Yeh; Shun Hua Chen; Chun Keung Yu
ABSTRACT A mouse-adapted enterovirus 71 (EV71) strain with increased virulence in mice, MP4, was generated after four serial passages of the parental EV71 strain 4643 in mice. Strain MP4 exhibited a larger plaque size, grew more rapidly, and was more cytotoxic in vitro than strain 4643. Although strains 4643 and MP4 both induced apoptosis of SK-N-SH human neuroblastoma cells, MP4 was more virulent than 4643 in 1-day-old mice (50% lethal doses, 102 and 104 PFU/mouse, respectively). Strain MP4 (5 × 106 PFU/mouse), but not 4643, could orally infect 7-day-old mice, resulting in rear-limb paralysis followed by death 5 to 9 days after inoculation with the virus. Histopathologically, neuronal loss and apoptosis were evident in the spinal cords as well as the brain stems of the infected mice. The limb muscles displayed massive necrosis. There was early and transient virus replication in the intestines, whereas the spinal cord, brain, and muscle became the sites of viral replication during the late phase of the infection. Virus transmission occurred among infected and noninfected cagemates, as demonstrated by the occurrence of seroconversion and the presence of viable viruses in the stool samples of the latter. Protection against EV71 challenge was demonstrated following administration of hyperimmune serum 1 day after inoculation with the virus. Nucleotide sequence analysis of the genome of EV71 strain MP4 revealed four nucleotide changes on the 5′ untranslated region, three on the VP2 region, and eight on the 2C region, resulting in one and four amino acid substitutions in the VP2 and 2C proteins, respectively.
Journal of Immunology | 2002
Chiou Feng Lin; Huan Yao Lei; Ai-Li Shiau; Hsiao Sheng Liu; Trai Ming Yeh; Shun Hua Chen; Ching Chuan Liu; Shu Chen Chiu; Yee-Shin Lin
The onset of vascular leakage and hemorrhagic diathesis is one of the life-threatening complications occurring in dengue patients, yet the pathogenic mechanisms are not well understood. In this study, we demonstrated that Abs against dengue virus nonstructural protein 1 (NS1) generated in mice cross-reacted with human endothelial cells and mouse vessel endothelium. After binding, mouse anti-NS1 Abs induced endothelial cell apoptosis in a caspase-dependent manner. Inducible NO synthase expression could be observed; it showed a time- and dose-dependent correlation with NO production. Endothelial cell apoptosis, characterized by exposure of phosphatidylserine on the cell surface and nuclear DNA fragmentation, was blocked by treatment with the NO synthase inhibitor Nω-nitro-l-arginine methyl ester. Further studies demonstrated that the expression of Bcl-2 and Bcl-xL decreased in both mRNA and protein levels, whereas p53 and Bax increased after anti-NS1 treatment. Cytochrome c release was also observed. All of these effects could be inhibited by Nω-nitro-l-arginine methyl ester. Taken together, anti-NS1 Abs act as autoantibodies that cross-react with noninfected endothelial cells and trigger the intracellular signaling leading to the production of NO and to apoptosis. Endothelial cell damage may cause vascular leakage that contributes to the pathogenesis of dengue disease.
Journal of Immunology | 2006
Kao-Jean Huang; Yu-Ching Yang; Yee-Shin Lin; Jyh-Hsiung Huang; Hsiao Sheng Liu; Trai Ming Yeh; Shun Hua Chen; Ching Chuan Liu; Huan Yao Lei
Using flow cytometric assay and monoclonal anti-dengue Ab, we observed that both anti-E and anti-prM Abs could enhance dengue virus infection in a concentration-dependent but serotype-independent manner. Increases were found in both the percentage of dengue-infected cells and the expression of dengue E and NS1 protein per cell. Dengue virion binding and infection were enhanced on FcR-bearing cells via the Fc-FcγRII pathway. Furthermore, anti-prM Ab also enhanced dengue virion binding and infection on cells lacking FcR, such as BHK-21 or A549 cells, by the mechanism of peptide (CPFLKQNEPEDIDCW)-specific binding. Anti-prM Ab cross-reacted with BHK-21 or A549 cells and recognized self-Ags such as heat shock protein 60. In summary, a novel mechanism of anti-prM Ab-mediated enhancement on dengue virus infection was found to be mediated by dual specific binding to dengue virion and to target cells, in addition to the traditional enhancement on FcR-bearing cells.
Journal of Immunology | 2005
Chiou Feng Lin; Shu Chen Chiu; Yu Ling Hsiao; Shu Wen Wan; Huan Yao Lei; Ai-Li Shiau; Hsiao Sheng Liu; Trai Ming Yeh; Shun Hua Chen; Ching Chuan Liu; Yee Shin Lin
Vascular dysfunction is a hallmark associated with disease onset in dengue hemorrhagic fever and dengue shock syndrome. In addition to direct viral damage, immune responses to dengue virus (DV) infection may also underlie the pathogenesis of disease. We have proposed a mechanism of molecular mimicry in which Abs directed against DV nonstructural protein 1 (NS1) cross-react with endothelial cells and induce damage. In this study, we demonstrated the inflammatory endothelial cell activation induced by anti-DV NS1 via the transcription factor NF-κB-regulated pathway. Protein phosphorylation and NF-κB activation were observed after anti-DV NS1 stimulation in a human microvascular endothelial cell line-1. The cytokine and chemokine production, including IL-6, IL-8, and MCP-1, but not RANTES, in endothelial cells increased after treatment with anti-DV NS1 Abs. The expression of IL-6, IL-8, and MCP-1 was blocked by the preabsorption of anti-DV NS1 with DV NS1 or by the inhibition of NF-κB activation. Furthermore, the increases in both ICAM-1 expression and the ability of human PBMC to adhere to endothelial cells were also observed, and these effects were inhibited by pretreatment with anti-ICAM-1 or anti-MCP-1 Abs. Therefore, in addition to endothelial cell apoptosis, as previously reported, inflammatory activation occurs in endothelial cells after stimulation by anti-DV NS1 Abs. These results suggest the involvement of anti-DV NS1 Abs in the vasculopathy of DV infection.
Antiviral Research | 2002
Yin-Ling Lin; Huan Yao Lei; Yee-Shin Lin; Trai Ming Yeh; Shun Hua Chen; Hsiao Sheng Liu
Liver is suggested to be the major target of dengue virus infection and plays an important role in the immunopathogenesis of dengue hemorrhagic fever. Previously, we reported that five human liver cell lines (HuH-7, HA22T, Hep3B, PLC, and Chang liver) with various degrees of differentiation and tumorigenicity showed different susceptibility for dengue virus infection. Here, we demonstrate that heparin, an analogue of heparan sulfate (HS), can compete with HS on cell membrane for virus binding and subsequently inhibits the replication of dengue-2 and Japanese encephalitis viruses in hepatoma and BHK-21 cells, respectively. It indicates that the binding of these viruses with HS is an important process for their invasion. Moreover, the inhibitory effect of heparin correlates with the infectivity of the virus in the cells. All together, our results suggest that HS is an important host component for dengue and Japanese encephalitis virus replication, which can be effectively blocked by heparin.
The Journal of Infectious Diseases | 2008
Zhao Hong Li; Chien Ming Li; Pin Ling; Fang Hsiu Shen; Shih Heng Chen; Ching Chuan Liu; Chun Keung Yu; Shun Hua Chen
Abstract Enterovirus 71 (EV71) causes fatal encephalitis in young children. However, there is no effective antiviral drug available for infected patients. Ribavirin is currently used for the treatment of several RNA virus infections clinically, so its anti-EV71 efficacy was evaluated. In vitro results showed that ribavirin effectively reduced the viral yields (with an IC50 of 65 μg/mL) and virus-induced cytopathic effect in human and mouse cell lines. In vivo results showed that ribavirin reduced the mortality, morbidity, and subsequent paralysis sequelae in infected mice by decreasing viral loads in tissues. Thus, ribavirin could be a potential anti-EV71 drug
Journal of Virology | 2002
Yu-Wen Lin; Kuan-Ju Wang; Huan Yao Lei; Yee-Shin Lin; Trai Ming Yeh; Hsiao Sheng Liu; Ching Chuan Liu; Shun Hua Chen
ABSTRACT Dengue virus (DV) replication, antibody-enhanced viral infection, and cytokine responses of human primary B lymphocytes (cells) were characterized and compared with those of monocytes. The presence of a replication template (negative-strand RNA intermediate), viral antigens including core and nonstructural proteins, and increasing amounts of virus with time postinfection indicated that DV actively replicated in B cells. Virus infection also induced B cells to produce interleukin-6 and tumor necrosis factor alpha, which have been previously implicated in virus pathogenesis. In addition, a heterologous antibody was able to enhance both virus and cytokine production in B cells. Furthermore, the levels of virus replication, antibody-enhanced virus replication, and cytokine responses observed in B cells were not statistically different from those in monocytes. These results suggest that B cells may play an important role in DV pathogenesis.
Journal of Virology | 2009
Yu Wen Lin; Kung Chao Chang; Chia Min Kao; Shih Ping Chang; Yuk Ying Tung; Shun Hua Chen
ABSTRACT Enterovirus 71 (EV71) infects the central nervous system and causes death and long-term neurological sequelae in hundreds of thousands of young children, but its pathogenesis remains elusive. Immunopathological mechanisms have been suspected to contribute to the pathogenesis of neurological symptoms, so anti-inflammatory agents have been used to treat patients with neurological symptoms. The present study was therefore designed to investigate the functions of lymphocyte and antibody responses in EV71 infection using a mouse model. Immunohistochemical staining analysis revealed virus and three types of lymphocytes, B cells, CD4 T cells, and CD8 T cells, in the spinal cord of an EV71-infected patient who died. A study of mice showed that the levels of virus and lymphocytes in brains and antibody titers in sera were elevated during the time when the mice succumbed to death in a phenomenon analogous to that observed in patients. Further studies demonstrated that after infection, the disease severity, mortality, and tissue viral loads of mice deficient in B, CD4 T, or CD8 T cells were significantly higher than those of wild-type mice. In addition, treatment with a virus-specific antibody, but not a control antibody, before or after infection significantly reduced the disease severity, mortality, and tissue viral loads of mice deficient in B cells. Our results show that both lymphocyte and antibody responses protect mice from EV71 infection. Our study suggests the use of vaccines and virus-specific antibodies to control fatal outbreaks and raises caution over the use of corticosteroids to treat EV71-infected patients with neurological symptoms.