Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shun Ishibashi is active.

Publication


Featured researches published by Shun Ishibashi.


Journal of Biological Chemistry | 1999

Sterol Regulatory Element-binding Protein-1 as a Key Transcription Factor for Nutritional Induction of Lipogenic Enzyme Genes

Hitoshi Shimano; Naoya Yahagi; Michiyo Amemiya-Kudo; Alyssa H. Hasty; Jun-ichi Osuga; Yoshiaki Tamura; Futoshi Shionoiri; Yoko Iizuka; Ken Ohashi; Kenji Harada; Takanari Gotoda; Shun Ishibashi; Nobuhiro Yamada

To elucidate the physiological role of sterol regulatory element-binding protein-1 (SREBP-1), the hepatic mRNA levels of genes encoding various lipogenic enzymes were estimated in SREBP-1 gene knockout mice after a fasting-refeeding treatment, which is an established dietary manipulation for the induction of lipogenic enzymes. In the fasted state, the mRNA levels of all lipogenic enzymes were consistently low in both wild-type andSREBP-1 −/− mice. However, the absence of SREBP-1 severely impaired the marked induction of hepatic mRNAs of fatty acid synthetic genes, such as acetyl-CoA carboxylase, fatty acid synthase, and stearoyl-CoA desaturase, that was observed upon refeeding in the wild-type mice. Furthermore, the refeeding responses of other lipogenic enzymes, glycerol-3-phosphate acyltransferase, ATP citrate lyase, malic enzyme, glucose-6-phosphate dehydrogenase, and S14 mRNAs, were completely abolished inSREBP-1 −/− mice. In contrast, mRNA levels for cholesterol biosynthetic genes were elevated in the refedSREBP-1 −/− livers accompanied by an increase in nuclear SREBP-2 protein. When fed a high carbohydrate diet for 14 days, the mRNA levels for these lipogenic enzymes were also strikingly lower in SREBP-1 −/− mice than those in wild-type mice. These data demonstrate that SREBP-1 plays a crucial role in the induction of lipogenesis but not cholesterol biosynthesis in liver when excess energy by carbohydrates is consumed.


Molecular and Cellular Biology | 2001

Identification of Liver X Receptor-Retinoid X Receptor as an Activator of the Sterol Regulatory Element-Binding Protein 1c Gene Promoter

Tomohiro Yoshikawa; Hitoshi Shimano; Michiyo Amemiya-Kudo; Naoya Yahagi; Alyssa H. Hasty; Takashi Matsuzaka; Hiroaki Okazaki; Yoshiaki Tamura; Yoko Iizuka; Ken Ohashi; Jun-ichi Osuga; Kenji Harada; Takanari Gotoda; Satoshi Kimura; Shun Ishibashi; Nobuhiro Yamada

ABSTRACT In an attempt to identify transcription factors which activate sterol-regulatory element-binding protein 1c (SREBP-1c) transcription, we screened an expression cDNA library from adipose tissue of SREBP-1 knockout mice using a reporter gene containing the 2.6-kb mouse SREBP-1 gene promoter. We cloned and identified the oxysterol receptors liver X receptor (LXRα) and LXRβ as strong activators of the mouse SREBP-1c promoter. In the transfection studies, expression of either LXRα or -β activated the SREBP-1c promoter-luciferase gene in a dose-dependent manner. Deletion and mutation studies, as well as gel mobility shift assays, located an LXR response element complex consisting of two new LXR-binding motifs which showed high similarity to an LXR response element recently found in the ABC1 gene promoter, a reverse cholesterol transporter. Addition of an LXR ligand, 22(R)-hydroxycholesterol, increased the promoter activity. Coexpression of retinoid X receptor (RXR), a heterodimeric partner, and its ligand 9-cis-retinoic acid also synergistically activated the SREBP-1c promoter. In HepG2 cells, SREBP-1c mRNA and precursor protein levels were induced by treatment with 22(R)-hydroxycholesterol and 9-cis-retinoic acid, confirming that endogenous LXR-RXR activation can induce endogenous SREBP-1c expression. The activation of SREBP-1c by LXR is associated with a slight increase in nuclear SREBP-1c, resulting in activation of the gene for fatty acid synthase, one of its downstream genes, as measured by the luciferase assay. These data demonstrate that LXR-RXR can modify the expression of genes for lipogenic enzymes by regulating SREBP-1c expression, providing a novel link between fatty acid and cholesterol metabolism.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2001

Troglitazone Inhibits Atherosclerosis in Apolipoprotein E–Knockout Mice Pleiotropic Effects on CD36 Expression and HDL

Zhong Chen; Shun Ishibashi; Stéphane Perrey; Jun-ichi Osuga; Takanari Gotoda; Tetsuya Kitamine; Yoshiaki Tamura; Hiroaki Okazaki; Naoya Yahagi; Yoko Iizuka; Futoshi Shionoiri; Ken Ohashi; Kenji Harada; Hitoshi Shimano; Ryozo Nagai; Nobuhiro Yamada

Abstract —Atherosclerotic coronary heart disease is a common complication of the insulin resistance syndrome that can occur with or without diabetes mellitus. Thiazolidinediones (TZDs), which are insulin-sensitizing antidiabetic agents, can modulate the development of atherosclerosis not only by changing the systemic metabolic conditions associated with insulin resistance but also by exerting direct effects on vascular wall cells that express peroxisome proliferator–activated receptor-&ggr; (PPAR-&ggr;), a nuclear receptor for TZDs. Here we show that troglitazone, a TZD, significantly inhibited fatty streak lesion formation in apolipoprotein E–knockout mice fed a high-fat diet (en face aortic surface lesion areas were 6.9±2.5% vs 12.7±4.7%, P <0.05; cross-sectional lesion areas were 191 974±102 911 &mgr;m2 vs 351 738±175 597 &mgr;m2, P <0.05; n=10). Troglitazone attenuated hyperinsulinemic hyperglycemia and increased high density lipoprotein cholesterol levels. In the aorta, troglitazone markedly increased the mRNA levels of CD36, a scavenger receptor for oxidized low density lipoprotein, presumably by upregulating its expression, at least in part, in the macrophage foam cells. These results indicate that troglitazone potently inhibits fatty streak lesion formation by modulating both metabolic extracellular environments and arterial wall cell functions.


Journal of Biological Chemistry | 1999

A Crucial Role of Sterol Regulatory Element-binding Protein-1 in the Regulation of Lipogenic Gene Expression by Polyunsaturated Fatty Acids

Naoya Yahagi; Hitoshi Shimano; Alyssa H. Hasty; Michiyo Amemiya-Kudo; Hiroaki Okazaki; Yoshiaki Tamura; Yoko Iizuka; Futoshi Shionoiri; Ken Ohashi; Jun-ichi Osuga; Kenji Harada; Takanari Gotoda; Ryozo Nagai; Shun Ishibashi; Nobuhiro Yamada

Dietary polyunsaturated fatty acids (PUFA) are negative regulators of hepatic lipogenesis that exert their effects primarily at the level of transcription. Sterol regulatory element-binding proteins (SREBPs) are transcription factors responsible for the regulation of cholesterol, fatty acid, and triglyceride synthesis. In particular, SREBP-1 is known to play a crucial role in the regulation of lipogenic gene expression in the liver. To explore the possible involvement of SREBP-1 in the suppression of hepatic lipogenesis by PUFA, we challenged wild-type mice and transgenic mice overexpressing a mature form of SREBP-1 in the liver with dietary PUFA. In the liver of wild-type mice, dietary PUFA drastically decreased the mature, cleaved form of SREBP-1 protein in the nucleus, whereas the precursor, uncleaved form in the membranes was not suppressed. The decreases in mature SREBP-1 paralleled those in mRNAs for lipogenic enzymes such as fatty acid synthase and acetyl-CoA carboxylase. In the transgenic mice, dietary PUFA did not reduce the amount of transgenic SREBP-1 protein, excluding the possibility that PUFA accelerated the degradation of mature SREBP-1. The resulting sustained expression of mature SREBP-1 almost completely canceled the suppression of lipogenic gene expression by PUFA in the SREBP-1 transgenic mice. These results demonstrate that the suppressive effect of PUFA on lipogenic enzyme genes in the liver is caused by a decrease in the mature form of SREBP-1 protein, which is presumably due to the reduced cleavage of SREBP-1 precursor protein.


Journal of Biological Chemistry | 2000

Promoter Analysis of the Mouse Sterol Regulatory Element-binding Protein-1c Gene

Michiyo Amemiya-Kudo; Hitoshi Shimano; Tomohiro Yoshikawa; Naoya Yahagi; Alyssa H. Hasty; Hiroaki Okazaki; Yoshiaki Tamura; Futoshi Shionoiri; Yoko Iizuka; Ken Ohashi; Jun-ichi Osuga; Kenji Harada; Takanari Gotoda; Ryuichiro Sato; Satoshi Kimura; Shun Ishibashi; Nobuhiro Yamada

Recent data suggest that sterol regulatory-binding protein (SREBP)-1c plays a key role in the transcriptional regulation of different lipogenic genes mediating lipid synthesis as a key regulator of fuel metabolism. SREBP-1c regulates its downstream genes by changing its own mRNA level, which led us to sequence and analyze the promoter region of the mouse SREBP-1c gene. A cluster of putative binding sites of several transcription factors composed of an NF-Y site, an E-box, a sterol-regulatory element 3, and an Sp1 site were located at −90 base pairs of the SREBP-1c promoter. Luciferase reporter gene assays indicated that this SRE complex is essential to the basal promoter activity and confers responsiveness to activation by nuclear SREBPs. Deletion and mutation analyses suggest that the NF-Y site and SRE3 in the SRE complex are responsible for SREBP activation, although the other sites were also involved in the basal activity. Gel mobility shift assays demonstrate that SREBP-1 binds to the SRE3. Taken together, these findings implicate a positive loop production of SREBP-1c through the SRE complex, possibly leading to the overshoot in induction of SREBP-1c and its downstream genes seen in the livers of refed mice. Furthermore, reporter assays using larger upstream fragments indicated another region that was inducible by addition of sterols. The presence of the SRE complex and a sterol-inducible region in the same promoter suggests a novel regulatory link between cholesterol and fatty acid synthesis.


Journal of Biological Chemistry | 2000

Sterol Regulatory Element-binding Protein-1 Is Regulated by Glucose at the Transcriptional Level

Alyssa H. Hasty; Hitoshi Shimano; Naoya Yahagi; Michiyo Amemiya-Kudo; Stéphane Perrey; Tomohiro Yoshikawa; Jun-ichi Osuga; Hiroaki Okazaki; Yoshiaki Tamura; Yoko Iizuka; Futoshi Shionoiri; Ken Ohashi; Kenji Harada; Takanari Gotoda; Ryozo Nagai; Shun Ishibashi; Nobuhiro Yamada

In vivo studies suggest that sterol regulatory element-binding protein (SREBP)-1 plays a key role in the up-regulation of lipogenic genes in the livers of animals that have consumed excess amounts of carbohydrates. In light of this, we sought to use an established mouse hepatocyte cell line, H2-35, to further define the mechanism by which glucose regulates nuclear SREBP-1 levels. First, we show that these cells transcribe high levels of SREBP-1c that are increased 4-fold upon differentiation from a prehepatocyte to a hepatocyte phenotype, making them an ideal cell culture model for the study of SREBP-1c induction. Second, we demonstrate that the presence of precursor and mature forms of SREBP-1 protein are positively regulated by medium glucose concentrations ranging from 5.5 to 25 mm and are also regulated by insulin, with the amount of insulin in the fetal bovine serum being sufficient for maximal stimulation of SREBP-1 expression. Third, we show that the increase in SREBP-1 protein is due to an increase in SREBP-1 mRNA. Reporter gene analysis of the SREBP-1c promoter demonstrated a glucose-dependent induction of transcription. In contrast, expression of a fixed amount of the precursor form of SREBP-1c protein showed that glucose does not influence its cleavage. Fourth, we demonstrate that the glucose induction of SREBP could not be reproduced by fructose, xylose, or galactose nor by glucose analogs 2-deoxy glucose and 3-O-methyl glucopyranose. These data provide strong evidence for the induction of SREBP-1c mRNA by glucose leading to increased mature protein in the nucleus, thus providing a potential mechanism for the up-regulation of lipogenic genes by glucosein vivo.


Journal of Biological Chemistry | 1999

Embryonic Lethality and Defective Neural Tube Closure in Mice Lacking Squalene Synthase

Ryu-ichi Tozawa; Shun Ishibashi; Jun-ichi Osuga; Hiroaki Yagyu; Teruaki Oka; Zhong Chen; Ken Ohashi; Stéphane Perrey; Futoshi Shionoiri; Naoya Yahagi; Kenji Harada; Takanari Gotoda; Yoshio Yazaki; Nobuhiro Yamada

Squalene synthase (SS) catalyzes the reductive head-to-head condensation of two molecules of farnesyl diphosphate to form squalene, the first specific intermediate in the cholesterol biosynthetic pathway. We used gene targeting to knock out the mouse SS gene. The mice heterozygous for the mutation (SS+/−) were apparently normal. SS+/− mice showed 60% reduction in the hepatic mRNA levels of SS compared with SS+/+ mice. Consistently, the SS enzymatic activities were reduced by 50% in the liver and testis. Nevertheless, the hepatic cholesterol synthesis was not different between SS+/− and SS+/+ mice, and plasma lipoprotein profiles were not different irrespective of the presence of the low density lipoprotein receptor, indicating that SS is not a rate-limiting enzyme in the cholesterol biosynthetic pathway. The mice homozygous for the disrupted SS gene (SS−/−) were embryonic lethal around midgestation. E9.5–10.5 SS−/−embryos exhibited severe growth retardation and defective neural tube closure. The lethal phenotype was not rescued by supplementing the dams either with dietary squalene or cholesterol. We speculate that cholesterol is required for the development, particularly of the nervous system, and that the chorioallantoic circulatory system is not mature enough to supply the rapidly growing embryos with maternal cholesterol at this developmental stage.


Genes to Cells | 1999

Presence of telomeric G-strand tails in the telomerase catalytic subunit TERT knockout mice

Xunmei Yuan; Shun Ishibashi; Shinji Hatakeyama; Motoki Saito; Jun-ichi Nakayama; Rika Nikaido; Takahiro Haruyama; Yoshifumi Watanabe; Hijiri Iwata; Mari Iida; Haruhiko Sugimura; Nobuhiro Yamada; Fuyuki Ishikawa

Telomerase consists of two essential subunits, the template RNA (TR; telomerase RNA) and the catalytic subunit TERT (telomerase reverse transcriptase). Knockout mice with a mTR (mouse TR) deletion have been described and well characterized. However, mice with a mTERT (mouse TERT) deletion have not been reported.


Journal of Biological Chemistry | 2003

Early Embryonic Lethality Caused by Targeted Disruption of the 3-Hydroxy-3-methylglutaryl-CoA Reductase Gene

Ken Ohashi; Jun-ichi Osuga; Ryu-ichi Tozawa; Tetsuya Kitamine; Hiroaki Yagyu; Motohiro Sekiya; Sachiko Tomita; Hiroaki Okazaki; Yoshiaki Tamura; Naoya Yahagi; Yoko Iizuka; Kenji Harada; Takanari Gotoda; Hitoshi Shimano; Nobuhiro Yamada; Shun Ishibashi

The endoplasmic reticulum (ER) enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, which converts HMG-CoA to mevalonate, catalyzes the ratelimiting step in cholesterol biosynthesis. Because this mevalonate pathway also produces several non-sterol isoprenoid compounds, the level of HMG-CoA reductase activity may coordinate many cellular processes and functions. We used gene targeting to knock out the mouse HMG-CoA reductase gene. The heterozygous mutant mice (Hmgcr+/–) appeared normal in their development and gross anatomy and were fertile. Although HMG-CoA reductase activities were reduced in Hmgcr+/– embryonic fibroblasts, the enzyme activities and cholesterol biosynthesis remained unaffected in the liver from Hmgcr+/– mice, suggesting that the haploid amount of Hmgcr gene is not rate-limiting in the hepatic cholesterol homeostasis. Consistently, plasma lipoprotein profiles were similar between Hmgcr+/– and Hmgcr+/+ mice. In contrast, the embryos homozygous for the Hmgcr mutant allele were recovered at the blastocyst stage, but not at E8.5, indicating that HMG-CoA reductase is crucial for early development of the mouse embryos. The lethal phenotype was not completely rescued by supplementing the dams with mevalonate. Although it has been postulated that a second, peroxisome-specific HMG-CoA reductase could substitute for the ER reductase in vitro, we speculate that the putative peroxisomal reductase gene, if existed, does not fully compensate for the lack of the ER enzyme at least in embryogenesis.


Journal of Biological Chemistry | 2010

Polyunsaturated fatty acids selectively suppress sterol regulatory element-binding protein-1 through proteolytic processing and autoloop regulatory circuit.

Yoshinori Takeuchi; Naoya Yahagi; Yoshihiko Izumida; Makiko Nishi; Midori Kubota; Yuji Teraoka; Takashi Yamamoto; Takashi Matsuzaka; Yoshimi Nakagawa; Motohiro Sekiya; Yoko Iizuka; Ken Ohashi; Jun Ichi Osuga; Takanari Gotoda; Shun Ishibashi; Keiji Itaka; Kazunori Kataoka; Ryozo Nagai; Nobuhiro Yamada; Takashi Kadowaki; Hitoshi Shimano

Sterol regulatory element-binding protein (SREBP)-1 is a key transcription factor for the regulation of lipogenic enzyme genes in the liver. Polyunsaturated fatty acids (PUFA) selectively suppress hepatic SREBP-1, but molecular mechanisms remain largely unknown. To gain insight into this regulation, we established in vivo reporter assays to assess the activities of Srebf1c transcription and proteolytic processing. Using these in vivo reporter assays, we showed that the primary mechanism for PUFA suppression of SREBP-1 is at the proteolytic processing level and that this suppression in turn decreases the mRNA transcription through lowering SREBP-1 binding to the SREBP-binding element on the promoter (“autoloop regulatory circuit”), although liver X receptor, an activator for Srebf1c transcription, is not involved in this regulation by PUFA. The mechanisms for PUFA suppression of SREBP-1 confirm that the autoloop regulation for transcription is crucial for the nutritional regulation of triglyceride synthesis.

Collaboration


Dive into the Shun Ishibashi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge