Shun-Li Wang
National Chiayi University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shun-Li Wang.
Advanced Drug Delivery Reviews | 2012
Shan-Yang Lin; Shun-Li Wang
The solid-state chemistry of drugs has seen growing importance in the pharmaceutical industry for the development of useful API (active pharmaceutical ingredients) of drugs and stable dosage forms. The stability of drugs in various solid dosage forms is an important issue because solid dosage forms are the most common pharmaceutical formulation in clinical use. In solid-state stability studies of drugs, an ideal accelerated method must not only be selected by different complicated methods, but must also detect the formation of degraded product. In this review article, an analytical technique combining differential scanning calorimetry and Fourier-transform infrared (DSC-FTIR) microspectroscopy simulates the accelerated stability test, and simultaneously detects the decomposed products in real time. The pharmaceutical dipeptides aspartame hemihydrate, lisinopril dihydrate, and enalapril maleate either with or without Eudragit E were used as testing examples. This one-step simultaneous DSC-FTIR technique for real-time detection of diketopiperazine (DKP) directly evidenced the dehydration process and DKP formation as an impurity common in pharmaceutical dipeptides. DKP formation in various dipeptides determined by different analytical methods had been collected and compiled. Although many analytical methods have been applied, the combined DSC-FTIR technique is an easy and fast analytical method which not only can simulate the accelerated drug stability testing but also at the same time enable to explore phase transformation as well as degradation due to thermal-related reactions. This technique offers quick and proper interpretations.
Pharmaceutical Research | 2004
Shun-Li Wang; Shan-Yang Lin; Ting-Fang Chen; Wen-Ting Cheng
AbstractPurpose. Enalapril may undergo the thermal-induced intramolecular interaction to cause an enalapril diketopiperazine (DKP) formation. It is interesting to study the influence of Eudragit E, as a coating polymer, on the stability of enalapril maleate. The reaction kinetics of the solid-state degradation process of pure enalapril maleate and Eudragit E/enalapril maleate mixture with different weight ratios were examined. The mechanism of solid-state interaction between Eudragit E and enalapril maleate was also discussed. Methods. The cast samples of pure enalapril maleate or Eudragit E/enalapril maleate mixture after evaporating the solvent were prepared on an aluminum foil and also determined by reflectance Fourier transform infrared (FTIR) microspectroscopy equipped with thermal analyzer. Results. The result indicates that the interaction might occur between enalapril maleate and Eudragit E in the solid state after evaporating the solvent. The thermal-dependent FTIR spectra show that not only the formation of DKP but also the six-membered cyclic anhydride occurred in the enalapril maleate/Eudragit E mixture in the heating process. Two pathways for solid-sate interaction were proposed. The stability of enalapril maleate was dependent on the weight ratio of enalapril maleate and Eudragit E. The activation energy (n = 3) of DKP formation for pure enalapril maleate was about 141.2 ± 0.7 kJ/mol, but it was reduced significantly to 86.7 ± 0.8 kJ/mol after interaction with Eudragit E (weight ratio: 1:1), suggesting Eudragit E might exacerbate the degradation of enalapril maleate. However, the degradation accelerated by Eudragit E was reduced in high content of Eudragit E. Conclusions. When the weight ratio of both components was 1:1, Eudragit E might interact with the carboxyl group of maleic acid to exacerbate the degradation of enalapril maleate. However, the excess amount of Eudragit E might somewhat reduce the degradation of enalapril, due to the interaction that occurred between Eudragit E and carboxyl group of enalapril.
European Journal of Pharmaceutics and Biopharmaceutics | 2002
Shan-Yang Lin; Shun-Li Wang; Ting-Fang Chen; Ting-Chou Hu
The pathway of diketopiperazine (DKP) formation of solid-state enalapril maleate has been studied by using a novel Fourier transform infrared microspectroscope equipped with a thermal analyzer (thermal FT-IR microscopic system). The thermogram of the conventional differential scanning calorimetry (DSC) method was also compared. The results show new evidence of IR peaks at 3250 cm(-1) (the broad O-H stretching mode of water), and at 1738 and 1672 cm(-1) (the carbonyl band of DKP), indicating DKP formation in enalapril maleate via intramolecular cyclization. Moreover, the disappearance of IR peaks from enalapril maleate at 3215 cm(-1) (the secondary amine), 1728 cm(-1) (the carbonyl group of carboxylic acid), and 1649 cm(-1) (the carbonyl stretching of tertiary amide) also confirmed the DKP formation. The thermal FT-IR microscopic system clearly evidenced that the DKP formation in enalapril maleate started from 129 degrees C, and reached a maximum at 137 degrees C. This result was also confirmed by the conventional DSC thermogram of the compressed mixture of KBr powder and enalapril maleate, in which an endothermic peak at 144 degrees C with an extrapolated onset temperature at 137 degrees C was observed. This strongly suggests that the thermal FT-IR microscopic system was able to qualitatively detect the formation of DKP derivatives in solid-state enalapril maleate via intramolecular cyclization.
Drug Development and Industrial Pharmacy | 2008
Wen-Ting Cheng; Shan-Yang Lin; Shun-Li Wang
Differential scanning calorimetry (DSC) combined with a curve-fitting program was utilized to quantitatively determine the polymorphic composition of famotidine in the compacts prepared by different compression treatments. Two types of famotidine compacts (compact I or II) were prepared by compressing a conical shape or a flattened shape of powder bed of famotidine form B. The compact I was constructed by a transparent region in the center with an opaque region surrounded outside, but the compact II was formed by a whole opaque region only. A drilled disc sample was prepared and then directly determined by DSC analysis. The Raman spectral results clearly indicate that all the compacts whether in any region before DSC determination were only of famotidine form B and independent of compression pressure applied. Under DSC determination, however, the curve-fitted relative compositions of form B in the drilled disc I sample were gradually reduced to 23–24% with the increase of compression pressure, whereas the curve-fitted relative composition of form A was slowly increased up to 76–77%. A transitional phase of famotidine form B (form B*) in the transparent region of the compact I after applying >150 kg/cm2 of compression pressure was easily detected, and then transformed to famotidine form A under DSC heating process. But this transitional phase and polymorphic transformation of famotidine could not be detected by other spectroscopic methods. This suggests that the DSC heating system was a preferred method not only to quantitatively analyze the polymorphic transformation of famotidine but also to find a newly transitional phase of famotidine in the compressed compact.
Journal of Physics and Chemistry of Solids | 2000
Shan-Yang Lin; Shun-Li Wang; Y.-D Cheng
The molecular structure of acetaminophen in solid/liquid phase transition states was simply investigated by Fourier transform infrared (FT-IR) microspectroscopy equipped with differential scanning calorimetry (DSC). The result indicated that the intermolecular hydrogen bonds in the solid-state acetaminophen molecules were dramatically broken from 165°C, and loosened its molecular structure and packing to induce the phase transition between solid and liquid states. This study clearly shows that the microscopic FT-IR/DSC system is a useful tool for easy investigation of the changes in hydrogen bonding at the solid and liquid states of acetaminophen.
Microscopy and Microanalysis | 2007
Shan-Yang Lin; Ko-Hua Chen; Wen-Ting Cheng; Chi-Tien Ho; Shun-Li Wang
beta-carotene was first identified from the vitreous asteroid bodies (ABs) excised from one patient with asteroid hyalosis (AH) by confocal Raman microspectroscopy and was also verified by high performance liquid chromatography (HPLC). Two patients had been diagnosed with AH and intervened by surgical vitrectomy due to blurred vision. The morphology and components of both AB specimens were observed by optical microscopy and determined by using confocal Raman microspectroscopy and HPLC analysis, respectively. Surprisingly, two unique peaks at 1528 and 1157 cm(-1) were found in the Raman spectrum for the AB specimen of patient 1 alone, which were in close agreement with that of the Raman peaks at 1525 and 1158 cm(-1) for beta-carotene and/or lutein. However, HPLC analytical data clearly indicated that the retention time for the extracted sample from the AB specimen of patient 1 was observed at 13.685 min and just identical to that of beta-carotene (13.759 min) rather than lutein (2.978 min). In addition, the lack of any peak in the HPLC profile for the AB specimen of patient 2 also confirmed the absence of Raman peaks at 1525 and 1158 cm(-1). Thus this preliminary study strongly suggests that beta-carotene as a unique component of ABs was specifically detected from the AB specimen of one AH patient by using confocal Raman microspectroscopy and HPLC analysis.
Photochemical and Photobiological Sciences | 2003
Chih-Yuan Chen; Jinn-Hsuan Ho; Shun-Li Wang; Tong-Ing Ho
Electrongenerated chemiluminescence (ECL) of a series of intramolecular charge transfer (ICT) donor acceptor stilbenoid systems (2-9) bearing N,N-dimethylamino group as donor and pyridine, thiophene, quinoline or aryl groups as acceptors are studied. Most of the compounds (3-9) show ICT ECL through direct annihilation of the radical ions. For the weaker ICT compound (2), excimer ECL is observed instead.
Chemical & Pharmaceutical Bulletin | 2002
Shun-Li Wang; Shan-Yang Lin; Yen-Shan Wei
European Journal of Pharmaceutics and Biopharmaceutics | 2004
Shan-Yang Lin; Yen-Shan Wei; Mei-Jane Li; Shun-Li Wang
International Journal of Pharmaceutics | 2006
Shan-Yang Lin; Wen-Ting Cheng; Shun-Li Wang