Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shun Liang is active.

Publication


Featured researches published by Shun Liang.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Genomic and epigenetic alterations deregulate microRNA expression in human epithelial ovarian cancer

Lin Zhang; Stefano Volinia; Tomas Bonome; George A. Calin; Joel Greshock; Nuo Yang; Chang Gong Liu; Antonis Giannakakis; Pangiotis Alexiou; Kosei Hasegawa; Cameron N. Johnstone; Molly Megraw; Sarah Adams; Heini Lassus; Jia Huang; Sippy Kaur; Shun Liang; Praveen Sethupathy; Arto Leminen; Victor A. Simossis; Raphael Sandaltzopoulos; Yoshio Naomoto; Dionyssios Katsaros; Phyllis A. Gimotty; Angela DeMichele; Qihong Huang; Ralf Bützow; Anil K. Rustgi; Barbara L. Weber; Michael J. Birrer

MicroRNAs (miRNAs) are an abundant class of small noncoding RNAs that function as negative gene regulators. miRNA deregulation is involved in the initiation and progression of human cancer; however, the underlying mechanism and its contributions to genome-wide transcriptional changes in cancer are still largely unknown. We studied miRNA deregulation in human epithelial ovarian cancer by integrative genomic approach, including miRNA microarray (n = 106), array-based comparative genomic hybridization (n = 109), cDNA microarray (n = 76), and tissue array (n = 504). miRNA expression is markedly down-regulated in malignant transformation and tumor progression. Genomic copy number loss and epigenetic silencing, respectively, may account for the down-regulation of ≈15% and at least ≈36% of miRNAs in advanced ovarian tumors and miRNA down-regulation contributes to a genome-wide transcriptional deregulation. Last, eight miRNAs located in the chromosome 14 miRNA cluster (Dlk1-Gtl2 domain) were identified as potential tumor suppressor genes. Therefore, our results suggest that miRNAs may offer new biomarkers and therapeutic targets in epithelial ovarian cancer.


Cancer Research | 2008

MicroRNA Microarray Identifies Let-7i as a Novel Biomarker and Therapeutic Target in Human Epithelial Ovarian Cancer

Nuo Yang; Sippy Kaur; Stefano Volinia; Joel Greshock; Heini Lassus; Kosei Hasegawa; Shun Liang; Arto Leminen; Shan Deng; Lori Smith; Cameron N. Johnstone; Xian Ming Chen; Chang Gong Liu; Qihong Huang; Dionyssios Katsaros; George A. Calin; Barbara L. Weber; Ralf Bützow; Carlo M. Croce; George Coukos; Lin Zhang

MicroRNAs (miRNA) are approximately 22-nucleotide noncoding RNAs that negatively regulate protein-coding gene expression in a sequence-specific manner via translational inhibition or mRNA degradation. Our recent studies showed that miRNAs exhibit genomic alterations at a high frequency and their expression is remarkably deregulated in ovarian cancer, strongly suggesting that miRNAs are involved in the initiation and progression of this disease. In the present study, we performed miRNA microarray to identify the miRNAs associated with chemotherapy response in ovarian cancer and found that let-7i expression was significantly reduced in chemotherapy-resistant patients (n = 69, P = 0.003). This result was further validated by stem-loop real-time reverse transcription-PCR (n = 62, P = 0.015). Both loss-of-function (by synthetic let-7i inhibitor) and gain-of-function (by retroviral overexpression of let-7i) studies showed that reduced let-7i expression significantly increased the resistance of ovarian and breast cancer cells to the chemotherapy drug, cis-platinum. Finally, using miRNA microarray, we found that decreased let-7i expression was significantly associated with the shorter progression-free survival of patients with late-stage ovarian cancer (n = 72, P = 0.042). This finding was further validated in the same sample set by stem-loop real-time reverse transcription-PCR (n = 62, P = 0.001) and in an independent sample set by in situ hybridization (n = 53, P = 0.049). Taken together, our results strongly suggest that let-7i might be used as a therapeutic target to modulate platinum-based chemotherapy and as a biomarker to predict chemotherapy response and survival in patients with ovarian cancer.


Cancer Biology & Therapy | 2008

miR-210 links hypoxia with cell cycle regulation and is deleted in human epithelial ovarian cancer.

Antonis Giannakakis; Raphael Sandaltzopoulos; Joel Greshock; Shun Liang; Jia Huang; Kosei Hasegawa; Chunsheng Li; Ann O'Brien-Jenkins; Dionyssios Katsaros; Barbara L. Weber; Celeste Simon; George Coukos; Lin Zhang

Tumor growth results in hypoxia. Understanding the mechanisms of gene expression reprogramming under hypoxia may provide important clues to cancer pathogenesis. We studied miRNA genes that are regulated by hypoxia in ovarian cancer cell lines by TaqMan miRNA assay containing 157 mature miRNAs. MiR-210 was the most prominent miRNA consistently stimulated under hypoxic conditions. We provide evidence for the involvement of the HIF signaling pathway in miR-210 regulation. Biocomputational analysis and in vitro assays demonstrated that e2f transcription factor 3 (e2f3), a key protein in cell cycle, is regulated by miR-210. E2F3 was further confirmed to be downregulated at the protein level upon induction of miR-210. Importantly, we found remarkably high frequency of miR-210 gene copy deletions in ovarian cancer patients (64%, n=114) and that gene copy number correlates with miR-210 expression levels. Taken together, our results indicate that miR-210 plays a crucial role in tumor onset as a key regulator of the hypoxia response and provide evidence for a link between hypoxia and the regulation of cell cycle.


Journal of Biological Chemistry | 2010

Identification of MicroRNAs Regulating Reprogramming Factor LIN28 in Embryonic Stem Cells and Cancer Cells

Xiaomin Zhong; Ning Li; Shun Liang; Qihong Huang; George Coukos; Lin Zhang

LIN28 (a homologue of the Caenorhabditis elegans lin-28 gene) is an evolutionarily conserved RNA-binding protein and a master regulator controlling the pluripotency of embryonic stem cells. Together with OCT4, SOX2, and NANOG, LIN28 can reprogram somatic cells, producing induced pluripotent stem cells. Expression of LIN28 is highly restricted to embryonic stem cells and developing tissues. In human tumors, LIN28 is up-regulated and functions as an oncogene promoting malignant transformation and tumor progression. However, the mechanisms of transcriptional and post-transcriptional regulation of LIN28 are still largely unknown. To examine microRNAs (miRNAs) that repress LIN28 expression, a combined in silico prediction and miRNA library screening approach was used in the present study. Four miRNAs directly regulating LIN28 (let-7, mir-125, mir-9, and mir-30) were initially identified by this approach and further validated by quantitative RT-PCR, Western blot analysis, and a LIN28 3′-UTR reporter assay. We found that expression levels of these four miRNAs were clustered together and inversely correlated with LIN28 expression during embryonic stem cell differentiation. In addition, the expression of these miRNAs was remarkably lower in LIN28-positive tumor cells compared with LIN28-negative tumor cells. Importantly, we demonstrated that these miRNAs were able to regulate the expression and activity of let-7, mediated by LIN28. Taken together, our studies demonstrate that miRNAs let-7, mir-125, mir-9, and mir-30 directly repress LIN28 expression in embryonic stem and cancer cells. Global down-regulation of these miRNAs may be one of the mechanisms of LIN28 reactivation in human cancers.


Cancer Research | 2006

Integrative Genomic Analysis of Protein Kinase C (PKC) Family Identifies PKCι as a Biomarker and Potential Oncogene in Ovarian Carcinoma

Lin Zhang; Jia Huang; Nuo Yang; Shun Liang; Andrea Barchetti; Antonis Giannakakis; Mark G. Cadungog; Ann O'Brien-Jenkins; Marco Massobrio; Katherine F. Roby; Dionyssios Katsaros; Phyllis A. Gimotty; Ralf Bützow; Barbara L. Weber; George Coukos

The protein kinase C (PKC) family plays a key regulatory role in a wide range of cellular functions as well as in various cancer-associated signal transduction pathways. Here, we investigated the genomic alteration and gene expression of most known PKC family members in human ovarian cancer. The DNA copy number of PKC family genes was screened by a high-resolution array-based comparative genomic hybridization in 89 human ovarian cancer specimens. Five PKC genes exhibited significant DNA copy number gains, including PKCiota (43.8%), PKCbeta1 (37.1%), PKCgamma (27.6%), PKCzeta (22.5%), and PKCtheta (21.3%). None of the PKC genes exhibited copy number loss. The mRNA expression level of PKC genes was analyzed by microarray retrieval approach. Two of the amplified PKC genes, PKCiota and PKCtheta, were significantly up-regulated in ovarian cancer compared with normal ovary. Increased PKCiota expression correlated with tumor stage or grade, and PKCiota overexpression was seen mostly in ovarian carcinoma but not in other solid tumors. The above results were further validated by real-time reverse transcription-PCR with 54 ovarian cancer specimens and 24 cell lines; overexpression of PKCiota protein was also confirmed by tissue array and Western blot. Interestingly, overexpressed PKCiota did not affect ovarian cancer cell proliferation or apoptosis in vitro. However, decreased PKCiota expression significantly reduced anchorage-independent growth of ovarian cancer cells, whereas overexpression of PKCiota contributed to murine ovarian surface epithelium transformation in cooperation with mutant Ras. We propose that PKCiota may serve as an oncogene and a biomarker of aggressive disease in human ovarian cancer.


Clinical Cancer Research | 2007

Integrative genomic analysis of phosphatidylinositol 3'-kinase family identifies PIK3R3 as a potential therapeutic target in epithelial ovarian cancer.

Lin Zhang; Jia Huang; Nuo Yang; Joel Greshock; Shun Liang; Kosei Hasegawa; Antonis Giannakakis; Nikolaos Poulos; Ann O'Brien-Jenkins; Dionyssios Katsaros; Ralf Bützow; Barbara L. Weber; George Coukos

Purpose: The phosphatidylinositol 3′-kinase (PI3K) family plays a key regulatory role in various cancer-associated signal transduction pathways. Here, we investigated the genomic alterations and gene expression of most known PI3K family members in human epithelial ovarian cancer. Experimental Design: The DNA copy number of PI3K family genes was screened by a high-resolution array comparative genomic hybridization in 89 human ovarian cancer specimens. The mRNA expression level of PI3K genes was analyzed by microarray retrieval approach, and further validated by real-time reverse transcription-PCR. The expression of p55γ protein in ovarian cancer was analyzed on tissue arrays. Small interfering RNA was used to study the function of PIK3R3 in ovarian cancer. Results: In ovarian cancer, 6 of 12 PI3K genes exhibited significant DNA copy number gains (>20%), including PIK3CA (23.6%), PIK3CB (27.0%), PIK3CG (25.8%), PIK3R2 (29.2%), PIK3R3 (21.3%), and PIK3C2B (40.4%). Among those, only PIK3R3 had significantly up-regulated mRNA expression level in ovarian cancer compared with normal ovary. Up-regulated PIK3R3 mRNA expression was also observed in liver, prostate, and breast cancers. The PIK3R3 mRNA expression level was significantly higher in ovarian cancer cell lines (n = 18) than in human ovarian surface epithelial cells (n = 6, P = 0.002). Overexpression of p55γ protein in ovarian cancer was confirmed by tissue array analysis. In addition, we found that knockdown of PIK3R3 expression by small interfering RNA significantly increased the apoptosis in cultured ovarian cancer cell lines. Conclusion: We propose that PIK3R3 may serve as a potential therapeutic target in human ovarian cancer.


Molecular Cancer Research | 2013

The Heterochronic microRNA let-7 Inhibits Cell Motility by Regulating the Genes in the Actin Cytoskeleton Pathway in Breast Cancer

Xiaowen Hu; Jinyi Guo; Lan Zheng; Chunsheng Li; Tim M. Zheng; Janos L. Tanyi; Shun Liang; Chiara Benedetto; Marco Mitidieri; Dionyssios Katsaros; Xia Zhao; Youcheng Zhang; Qihong Huang; Lin Zhang

The heterochronic gene let-7 serves as a tumor suppressor microRNA by targeting various oncogenic pathways in cancer cells. Considerable evidence indicates that reduced expression of let-7 might be associated with poor clinical outcome in patients with cancer. Here, we report that the expression levels of three let-7 family members, let-7a, let-7b, and let-7g, were significantly decreased in the patients with breast cancer with lymph node metastasis compared with those without lymph node metastasis. Enforced expression of let-7b significantly inhibits breast cancer cell motility and affects actin dynamics. Using bioinformatic and experimental approaches, four genes in the actin cytoskeleton pathway, including PAK1, DIAPH2, RDX, and ITGB8, were identified as let-7 direct targets. Blocking the expression of PAK1, DIAPH2, and RDX significantly inhibits breast cancer cell migration induced by let-7b repression. Our results indicate that reconstitution of let-7 expression in tumor cells could provide a novel therapeutic strategy for the treatment of metastatic disease. Mol Cancer Res; 11(3); 240–50. ©2013 AACR.


Cancer Research | 2012

A Combined Array-Based Comparative Genomic Hybridization and Functional Library Screening Approach Identifies mir-30d As an Oncomir in Cancer

Ning Li; Sippy Kaur; Joel Greshock; Heini Lassus; Xiaomin Zhong; Yanling Wang; Arto Leminen; Zhongjun Shao; Xiaowen Hu; Shun Liang; Dionyssios Katsaros; Qihong Huang; Ralf Bützow; Barbara L. Weber; George Coukos; Lin Zhang

Oncomirs are microRNAs (miRNA) that acts as oncogenes or tumor suppressor genes. Efficient identification of oncomirs remains a challenge. Here we report a novel, clinically guided genetic screening approach for the identification of oncomirs, identifying mir-30d through this strategy. mir-30d regulates tumor cell proliferation, apoptosis, senescence, and migration. The chromosomal locus harboring mir-30d was amplified in more than 30% of multiple types of human solid tumors (n = 1,283). Importantly, higher levels of mir-30d expression were associated significantly with poor clinical outcomes in ovarian cancer patients (n = 330, P = 0.0016). Mechanistic investigations suggested that mir-30d regulates a large number of cancer-associated genes, including the apoptotic caspase CASP3. The guided genetic screening approach validated by this study offers a powerful tool to identify oncomirs that may have utility as biomarkers or targets for drug development.


PLOS ONE | 2012

Genomic DNA Copy-Number Alterations of the let-7 Family in Human Cancers

Yanling Wang; Xiaowen Hu; Joel Greshock; Liang Shen; Xiaojun Yang; Zhongjun Shao; Shun Liang; Janos L. Tanyi; Anil K. Sood; Lin Zhang

In human cancer, expression of the let-7 family is significantly reduced, and this is associated with shorter survival times in patients. However, the mechanisms leading to let-7 downregulation in cancer are still largely unclear. Since an alteration in copy-number is one of the causes of gene deregulation in cancer, we examined copy number alterations of the let-7 family in 2,969 cancer specimens from a high-resolution SNP array dataset. We found that there was a reduction in the copy number of let-7 genes in a cancer-type specific manner. Importantly, focal deletion of four let-7 family members was found in three cancer types: medulloblastoma (let-7a-2 and let-7e), breast cancer (let-7a-2), and ovarian cancer (let-7a-3/let-7b). For example, the genomic locus harboring let-7a-3/let-7b was deleted in 44% of the specimens from ovarian cancer patients. We also found a positive correlation between the copy number of let-7b and mature let-7b expression in ovarian cancer. Finally, we showed that restoration of let-7b expression dramatically reduced ovarian tumor growth in vitro and in vivo. Our results indicate that copy number deletion is an important mechanism leading to the downregulation of expression of specific let-7 family members in medulloblastoma, breast, and ovarian cancers. Restoration of let-7 expression in tumor cells could provide a novel therapeutic strategy for the treatment of cancer.


PLOS ONE | 2008

Transcriptional Regulation of PIK3CA Oncogene by NF-κB in Ovarian Cancer Microenvironment

Nuo Yang; Jia Huang; Joel Greshock; Shun Liang; Andrea Barchetti; Kosei Hasegawa; S.H. Kim; Antonis Giannakakis; Chunsheng Li; Anne O'Brien-Jenkins; Dionyssios Katsaros; Ralf Bützow; George Coukos; Lin Zhang

PIK3CA upregulation, amplification and mutation have been widely reported in ovarian cancers and other tumors, which strongly suggests that PIK3CA is a promising therapeutic target. However, to date the mechanisms underlying PIK3CA regulation and activation in vivo is still unclear. During tumorigenesis, host-tumor interactions may play a critical role in editing the tumor. Here, we report a novel mechanism through which the tumor microenvironment activates the PIK3CA oncogene. We show that PIK3CA upregulation occurs in non-proliferating tumor regions in vivo. We identified and characterized the PIK3CA 5′ upstream transcriptional regulatory region and confirmed that PIK3CA is transcriptionally regulated through NF-κB pathway. These results offer a new mechanism through which the tumor microenvironment directly activates oncogenic pathways in tumor cells.

Collaboration


Dive into the Shun Liang's collaboration.

Top Co-Authors

Avatar

Lin Zhang

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nuo Yang

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Jia Huang

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonis Giannakakis

Democritus University of Thrace

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Barchetti

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge