Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shungo Hikoso is active.

Publication


Featured researches published by Shungo Hikoso.


Nature Medicine | 2007

The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress.

Atsuko Nakai; Osamu Yamaguchi; Toshihiro Takeda; Yoshiharu Higuchi; Shungo Hikoso; Masayuki Taniike; Shigemiki Omiya; Isamu Mizote; Yasushi Matsumura; Michio Asahi; Kazuhiko Nishida; Masatsugu Hori; Noboru Mizushima; Kinya Otsu

Autophagy, an evolutionarily conserved process for the bulk degradation of cytoplasmic components, serves as a cell survival mechanism in starving cells. Although altered autophagy has been observed in various heart diseases, including cardiac hypertrophy and heart failure, it remains unclear whether autophagy plays a beneficial or detrimental role in the heart. Here, we report that the cardiac-specific loss of autophagy causes cardiomyopathy in mice. In adult mice, temporally controlled cardiac-specific deficiency of Atg5 (autophagy-related 5), a protein required for autophagy, led to cardiac hypertrophy, left ventricular dilatation and contractile dysfunction, accompanied by increased levels of ubiquitination. Furthermore, Atg5-deficient hearts showed disorganized sarcomere structure and mitochondrial misalignment and aggregation. On the other hand, cardiac-specific deficiency of Atg5 early in cardiogenesis showed no such cardiac phenotypes under baseline conditions, but developed cardiac dysfunction and left ventricular dilatation one week after treatment with pressure overload. These results indicate that constitutive autophagy in the heart under baseline conditions is a homeostatic mechanism for maintaining cardiomyocyte size and global cardiac structure and function, and that upregulation of autophagy in failing hearts is an adaptive response for protecting cells from hemodynamic stress.


Nature | 2012

Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure

Takafumi Oka; Shungo Hikoso; Osamu Yamaguchi; Manabu Taneike; Toshihiro Takeda; Takahito Tamai; Jota Oyabu; Tomokazu Murakawa; Hiroyuki Nakayama; Kazuhiko Nishida; Shizuo Akira; Akitsugu Yamamoto; Issei Komuro; Kinya Otsu

Heart failure is a leading cause of morbidity and mortality in industrialized countries. Although infection with microorganisms is not involved in the development of heart failure in most cases, inflammation has been implicated in the pathogenesis of heart failure. However, the mechanisms responsible for initiating and integrating inflammatory responses within the heart remain poorly defined. Mitochondria are evolutionary endosymbionts derived from bacteria and contain DNA similar to bacterial DNA. Mitochondria damaged by external haemodynamic stress are degraded by the autophagy/lysosome system in cardiomyocytes. Here we show that mitochondrial DNA that escapes from autophagy cell-autonomously leads to Toll-like receptor (TLR) 9-mediated inflammatory responses in cardiomyocytes and is capable of inducing myocarditis and dilated cardiomyopathy. Cardiac-specific deletion of lysosomal deoxyribonuclease (DNase) II showed no cardiac phenotypes under baseline conditions, but increased mortality and caused severe myocarditis and dilated cardiomyopathy 10 days after treatment with pressure overload. Early in the pathogenesis, DNase II-deficient hearts showed infiltration of inflammatory cells and increased messenger RNA expression of inflammatory cytokines, with accumulation of mitochondrial DNA deposits in autolysosomes in the myocardium. Administration of inhibitory oligodeoxynucleotides against TLR9, which is known to be activated by bacterial DNA, or ablation of Tlr9 attenuated the development of cardiomyopathy in DNase II-deficient mice. Furthermore, Tlr9 ablation improved pressure overload-induced cardiac dysfunction and inflammation even in mice with wild-type Dnase2a alleles. These data provide new perspectives on the mechanism of genesis of chronic inflammation in failing hearts.


Autophagy | 2010

Inhibition of autophagy in the heart induces age-related cardiomyopathy.

Manabu Taneike; Osamu Yamaguchi; Atsuko Nakai; Shungo Hikoso; Toshihiro Takeda; Isamu Mizote; Takafumi Oka; Takahito Tamai; Jota Oyabu; Tomokazu Murakawa; Kazuhiko Nishida; Takahiko Shimizu; Masatsugu Hori; Issei Komuro; Takuji Shirasawa; Noboru Mizushima; Kinya Otsu

Constitutive autophagy is important for control of the quality of proteins and organelles to maintain cell function. Damaged proteins and organelles accumulate in aged organs. We have previously reported that cardiac-specific Atg5 (autophagy-related gene 5)-deficient mice, in which the gene was floxed out early in embryogenesis, were born normally, and showed normal cardiac function and structure up to 10 weeks old. In the present study, to determine the longer-term consequences of Atg5-deficiency in the heart, we monitored cardiac-specific Atg5-deficient mice for further 12 months. First, we examined the age-associated changes of autophagy in the wild-type mouse heart. The level of autophagy, as indicated by decreased LC3-II (microtubule-associated protein 1 light chain 3-II) levels, in the hearts of 6-, 14- or 26-month-old mice was lower than that of 10-week-old mice. Next, we investigated the cardiac function and life-span in cardiac-specific Atg5-deficient mice. The Atg5-deficient mice began to die after the age of 6 months. Atg5-deficient mice exhibited a significant increase in left ventricular dimension and decrease in fractional shortening of the left ventricle at the age of 10 months, compared to control mice, while they showed similar chamber size and contractile function at the age of 3 months. Ultrastructural analysis revealed a disorganized sarcomere structure and collapsed mitochondria in 3- and 10-month-old Atg5-deficient mice, with decreased mitochondrial respiratory functions. These results suggest that continuous constitutive autophagy has a crucial role in maintaining cardiac structure and function.


Molecular and Cellular Biology | 2004

p38α Mitogen-Activated Protein Kinase Plays a Critical Role in Cardiomyocyte Survival but Not in Cardiac Hypertrophic Growth in Response to Pressure Overload

Kazuhiko Nishida; Osaniu Yamaguchi; Shinichi Hirotani; Shungo Hikoso; Yoshiharu Higuchi; Tetsuya Watanabe; Toshihiro Takeda; Soh Osuka; Takashi Morita; Gen Kondoh; Yoshihiro Uno; Kazunori Kashiwase; Masayuki Taniike; Atsuko Nakai; Yasushi Matsumura; Jun-ichi Miyazaki; Tatsuhiko Sudo; Kenichi Hongo; Yoichiro Kusakari; Satoshi Kurihara; Kenneth R. Chien; Junji Takeda; Masatsugu Hori; Kinya Otsu

ABSTRACT The molecular mechanism for the transition from cardiac hypertrophy, an adaptive response to biomechanical stress, to heart failure is poorly understood. The mitogen-activated protein kinase p38α is a key component of stress response pathways in various types of cells. In this study, we attempted to explore the in vivo physiological functions of p38α in hearts. First, we generated mice with floxed p38α alleles and crossbred them with mice expressing the Cre recombinase under the control of the α-myosin heavy-chain promoter to obtain cardiac-specific p38α knockout mice. These cardiac-specific p38α knockout mice were born normally, developed to adulthood, were fertile, exhibited a normal life span, and displayed normal global cardiac structure and function. In response to pressure overload to the left ventricle, they developed significant levels of cardiac hypertrophy, as seen in controls, but also developed cardiac dysfunction and heart dilatation. This abnormal response to pressure overload was accompanied by massive cardiac fibrosis and the appearance of apoptotic cardiomyocytes. These results demonstrate that p38α plays a critical role in the cardiomyocyte survival pathway in response to pressure overload, while cardiac hypertrophic growth is unaffected despite its dramatic down-regulation.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Targeted deletion of apoptosis signal-regulating kinase 1 attenuates left ventricular remodeling

Osamu Yamaguchi; Yoshiharu Higuchi; Shinichi Hirotani; Kazunori Kashiwase; Hiroyuki Nakayama; Shungo Hikoso; Toshihiro Takeda; Tetsuya Watanabe; Michio Asahi; Masayuki Taniike; Yasushi Matsumura; Ikuko Tsujimoto; Kenichi Hongo; Yoichiro Kusakari; Satoshi Kurihara; Kazuhiko Nishida; Hidenori Ichijo; Masatsugu Hori; Kinya Otsu

Left ventricular remodeling that occurs after myocardial infarction (MI) and pressure overload is generally accepted as a determinant of the clinical course of heart failure. The molecular mechanism of this process, however, remains to be elucidated. Apoptosis signal-regulating kinase 1 (ASK1) is a mitogen-activated protein kinase kinase kinase that plays an important role in stress-induced apoptosis. We used ASK1 knockout mice (ASK-/-) to test the hypothesis that ASK1 is involved in development of left ventricular remodeling. ASK-/- hearts showed no morphological or histological defects. Echocardiography and cardiac catheterization revealed normal global structure and function. Left ventricular structural and functional remodeling were determined 4 weeks after coronary artery ligation or thoracic transverse aortic constriction (TAC). ASK-/- had significantly smaller increases in left ventricular end-diastolic and end-systolic ventricular dimensions and smaller decreases in fractional shortening in both experimental models compared with WT mice. The number of terminal deoxynucleotidyl transferase biotin-dUDP nick end-labeling-positive myocytes after MI or TAC was decreased in ASK-/- compared with that in WT mice. Overexpression of a constitutively active mutant of ASK1 induced apoptosis in isolated rat neonatal cardiomyocytes, whereas neonatal ASK-/- cardiomyocytes were resistant to H2O2-induced apoptosis. An in vitro kinase assay showed increased ASK1 activity in heart after MI or TAC in WT mice. Thus, ASK1 plays an important role in regulating left ventricular remodeling by promoting apoptosis.


Journal of Clinical Investigation | 2004

Cardiac-specific disruption of the c-raf-1 gene induces cardiac dysfunction and apoptosis

Osamu Yamaguchi; Tetsuya Watanabe; Kazuhiko Nishida; Kazunori Kashiwase; Yoshiharu Higuchi; Toshihiro Takeda; Shungo Hikoso; Shinichi Hirotani; Michio Asahi; Masayuki Taniike; Atsuko Nakai; Ikuko Tsujimoto; Yasushi Matsumura; Jun-ichi Miyazaki; Kenneth R. Chien; Atsushi Matsuzawa; Chiharu Sadamitsu; Hidenori Ichijo; Manuela Baccarini; Masatsugu Hori; Kinya Otsu

The Raf/MEK/extracellular signal-regulated kinase (ERK) signaling pathway regulates diverse cellular processes such as proliferation, differentiation, and apoptosis and is implicated as an important contributor to the pathogenesis of cardiac hypertrophy and heart failure. To examine the in vivo role of Raf-1 in the heart, we generated cardiac muscle-specific Raf-1-knockout (Raf CKO) mice with Cre-loxP-mediated recombination. The mice demonstrated left ventricular systolic dysfunction and heart dilatation without cardiac hypertrophy or lethality. The Raf CKO mice showed a significant increase in the number of apoptotic cardiomyocytes. The expression level and activation of MEK1/2 or ERK showed no difference, but the kinase activity of apoptosis signal-regulating kinase 1 (ASK1), JNK, or p38 increased significantly compared with that in controls. The ablation of ASK1 rescued heart dysfunction and dilatation as well as cardiac fibrosis. These results indicate that Raf-1 promotes cardiomyocyte survival through a MEK/ERK-independent mechanism.


Nature Communications | 2015

Bcl-2-like protein 13 is a mammalian Atg32 homologue that mediates mitophagy and mitochondrial fragmentation.

Tomokazu Murakawa; Osamu Yamaguchi; Ayako Hashimoto; Shungo Hikoso; Toshihiro Takeda; Takafumi Oka; Hiroki Yasui; Hiromichi Ueda; Yasuhiro Akazawa; Hiroyuki Nakayama; Manabu Taneike; Tomofumi Misaka; Shigemiki Omiya; Ajay M. Shah; Akitsugu Yamamoto; Kazuhiko Nishida; Yoshinori Ohsumi; Koji Okamoto; Yasushi Sakata; Kinya Otsu

Damaged mitochondria are removed by mitophagy. Although Atg32 is essential for mitophagy in yeast, no Atg32 homologue has been identified in mammalian cells. Here, we show that Bcl-2-like protein 13 (Bcl2-L-13) induces mitochondrial fragmentation and mitophagy in mammalian cells. First, we hypothesized that unidentified mammalian mitophagy receptors would share molecular features of Atg32. By screening the public protein database for Atg32 homologues, we identify Bcl2-L-13. Bcl2-L-13 binds to LC3 through the WXXI motif and induces mitochondrial fragmentation and mitophagy in HEK293 cells. In Bcl2-L-13, the BH domains are important for the fragmentation, while the WXXI motif facilitates mitophagy. Bcl2-L-13 induces mitochondrial fragmentation in the absence of Drp1, while it induces mitophagy in Parkin-deficient cells. Knockdown of Bcl2-L-13 attenuates mitochondrial damage-induced fragmentation and mitophagy. Bcl2-L-13 induces mitophagy in Atg32-deficient yeast cells. Induction and/or phosphorylation of Bcl2-L-13 may regulate its activity. Our findings offer insights into mitochondrial quality control in mammalian cells.


Biochemical and Biophysical Research Communications | 2003

Disruption of a single copy of the p38α MAP kinase gene leads to cardioprotection against ischemia–reperfusion

Kinya Otsu; Nobushige Yamashita; Kazuhiko Nishida; Shinichi Hirotani; Osamu Yamaguchi; Tetsuya Watanabe; Shungo Hikoso; Yoshiharu Higuchi; Yasushi Matsumura; Masumi Maruyama; Tatsuhiko Sudo; Masatsugu Hori

The p38 mitogen-activated protein kinase (p38) is activated in the heart during ischemia-reperfusion. However, it is not clear whether the activation of p38 is the protective response or the kinase mediates the cellular damage by ischemia-reperfusion. We examined the role of p38alpha in ischemia-reperfusion injury by studying p38alpha(+/-) mice. The p38alpha protein level in the p38alpha(+/-) heart was 50+/-8.7% compared with that in the p38alpha(+/+) heart. Upon reperfusion following ischemia for 25min, p38alpha activity was transiently increased. The maximum level of p38 activity in p38alpha(+/-) was 60+/-10.5% compared with that in p38alpha(+/+). In the p38alpha(+/+) heart, 25min ischemia and 2h reperfusion resulted in necrotic injury (37.1+/-2.7% of the area at risk), whereas infarct size was drastically reduced to 7.2+/-0.7% in the p38alpha(+/-) heart. These suggested that p38alpha plays a pivotal role in the signal transduction pathway mediating myocardial cell death caused by ischemia-reperfusion.


The FASEB Journal | 2002

Cardiac-specific overexpression of a high Ca2+ affinity mutant of SERCA2a attenuates in vivo pressure overload cardiac hypertrophy

Hiroyuki Nakayama; Kinya Otsu; Osamu Yamaguchi; Kazuhiko Nishida; Motoo Date; Kenichi Hongo; Yoichiro Kusakari; Toshihiko Toyofuku; Shungo Hikoso; Kazunori Kashiwase; Toshihiro Takeda; Yasushi Matsumura; Satoshi Kurihara; Masatsugu Hori; Michihiko Tada

In cardiomyocytes, calcium plays important roles as a signal in cardiac hypertrophy and contraction‐relaxation cycling. Elevation of Ca2+ concentration in myoplasm is associated with the onset and progression of hypertrophy as well as the enhancement of contractility. The cardiac Ca2+ ATPase (SERCA2a) of the sarcoplasmic reticulum plays a dominant role in lowering cytoplasmic calcium levels during relaxation and is regulated by phospholamban (PLN). To examine whether the modulation of SERCA2a activity results in the attenuation of cardiac hypertrophy and enhancement of contractility, we generated transgenic mice (TG) overexpressing a high calcium affinity SERCA2a mutant (K397/400E), lacking a functional association with PLN. In the TG hearts, the apparent affinity of SERCA2a for Ca2+ significantly increased compared with their nontransgenic littermate controls. The TG showed increased contraction and relaxation, with increases in the amplitude of Ca2+ transient and rapid Ca2+ decay. Upon induction of pressure overload by transverse aortic constriction, the TG developed less cardiac hypertrophy than littermate controls did. The activation of Ca2+‐sensitive protein kinase C by pressure overload was significantly attenuated in the TG hearts. Our findings indicate an association of SERCA2a activity with cardiac hypertrophy and thus a new therapeutic target for the prevention and treatment of cardiac hypertrophy.


Hypertension | 2005

The Antioxidant Edaravone Attenuates Pressure Overload–Induced Left Ventricular Hypertrophy

Ikuko Tsujimoto; Shungo Hikoso; Osamu Yamaguchi; Kazunori Kashiwase; Atsuko Nakai; Toshihiro Takeda; Tetsuya Watanabe; Masayuki Taniike; Yasushi Matsumura; Kazuhiko Nishida; Masatsugu Hori; Mikihiko Kogo; Kinya Otsu

The free radical scavenger 3-methyl-1-phenyl-2-pyrazolin-5-one (edaravone) is used to treat patients with ischemic brain damage. We and others reported previously that in vitro and in vivo reactive oxygen species (ROS) act as second messengers to develop cardiac hypertrophy. In this study, we used an in vivo murine model of pressure overload–induced cardiac hypertrophy to examine the effects of edaravone on left ventricular hypertrophy. The animals were subjected to the transverse thoracic aorta constriction, and edaravone (10 mg/kg) was infused intraperitoneally twice daily. Seven days after the operation, we observed a significant increase in ROS production in hearts, which was eliminated by the treatment with edaravone. Pressure-overloaded hearts showed a significant increase in left ventricular weight/body weight ratio and the expression level of atrial natriuretic factor mRNA, which were attenuated by edaravone. It also reduced perivascular and intermuscular fibrosis and inhibited pressure overload–induced activation of apoptosis signal-regulating kinase 1 (ASK1) and its downstream kinases of c-Jun N-terminal protein kinase and p38 mitogen-activated protein kinase. Edaravone attenuated the hypertrophic response even when the treatment was started after the onset of cardiac hypertrophic response. These findings indicate that edaravone significantly attenuates pressure overload–induced cardiac hypertrophy mediated through its antioxidative function and subsequent inhibition of ASK1 signaling pathway.

Collaboration


Dive into the Shungo Hikoso's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge