Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shunhui Zhuang is active.

Publication


Featured researches published by Shunhui Zhuang.


Oncogene | 2002

Rheb is in a high activation state and inhibits B-Raf kinase in mammalian cells

Edward Im; Friederike C. von Lintig; Jeffrey E. Chen; Shunhui Zhuang; Wansong Qui; Shoaib Chowdhury; Paul F. Worley; Gerry R. Boss; Renate B. Pilz

Rheb (Ras homolog enriched in brain) is a member of the Ras family of proteins, and is in the immediate Ras/Rap/Ral subfamily. We found in three different mammalian cell lines that Rheb was highly activated, to levels much higher than for Ras or Rap 1, and that Rhebs activation state was unaffected by changes in growth conditions. Rhebs high activation was not secondary to unique glycine to arginine, or glycine to serine substitutions at positions 14 and 15, corresponding to Ras residues 12 and 13, since Rheb R14G and R14G, S15G mutants had similarly high activation levels as wild type Rheb. These data are consistent with earlier work which showed that purified Rheb has similar GTPase activity as Ras, and suggest a relative intracellular deficiency of Rheb GTPase activating proteins (GAPs) compared to Rheb activators. Further evidence for relatively low intracellular GAP activity was that increased Rheb expression led to a marked increase in Rheb activation. Rheb, like Ras and Rap1, bound B-Raf kinase, but in contrast to Ras and Rap 1, Rheb inhibited B-Raf kinase activity and prevented B-Raf-dependent activation of the transcription factor Elk-1. Thus, Rheb appears to be a unique member of the Ras/Rap/Ral subfamily, and in mammalian systems may serve to regulate B-Raf kinase activity.


Journal of Biological Chemistry | 2009

A DNA Polymerase-α·Primase Cofactor with Homology to Replication Protein A-32 Regulates DNA Replication in Mammalian Cells

Darren E. Casteel; Shunhui Zhuang; Ying Zeng; Fred W. Perrino; Gerry R. Boss; Mehran Goulian; Renate B. Pilz

α-Accessory factor (AAF) stimulates the activity of DNA polymerase-α·primase, the only enzyme known to initiate DNA replication in eukaryotic cells ( Goulian, M., Heard, C. J., and Grimm, S. L. (1990) J. Biol. Chem. 265, 13221-13230 ). We purified the AAF heterodimer composed of 44- and 132-kDa subunits from cultured cells and identified full-length cDNA clones using amino acid sequences from internal peptides. AAF-132 demonstrated no homologies to known proteins; AAF-44, however, is evolutionarily related to the 32-kDa subunit of replication protein A (RPA-32) and contains an oligonucleotide/oligosaccharide-binding (OB) fold domain similar to the OB fold domains of RPA involved in single-stranded DNA binding. Epitope-tagged versions of AAF-44 and -132 formed a complex in intact cells, and purified recombinant AAF-44 bound to single-stranded DNA and stimulated DNA primase activity only in the presence of AAF-132. Mutations in conserved residues within the OB fold of AAF-44 reduced DNA binding activity of the AAF-44·AAF-132 complex. Immunofluorescence staining of AAF-44 and AAF-132 in S phase-enriched HeLa cells demonstrated punctate nuclear staining, and AAF co-localized with proliferating cell nuclear antigen, a marker for replication foci containing DNA polymerase-α·primase and RPA. Small interfering RNA-mediated depletion of AAF-44 in tumor cell lines inhibited [methyl-3H]thymidine uptake into DNA but did not affect cell viability. We conclude that AAF shares structural and functional similarities with RPA-32 and regulates DNA replication, consistent with its ability to increase polymerase-α·primase template affinity and stimulate both DNA primase and polymerase-α activities in vitro.


Journal of Biological Chemistry | 2000

Cell Type-specific Regulation of B-Raf Kinase by cAMP and 14-3-3 Proteins

Wansong Qiu; Shunhui Zhuang; Friederike C. von Lintig; Gerry R. Boss; Renate B. Pilz

Cyclic AMP can either activate or inhibit the mitogen-activated protein kinase (MAPK) pathway in different cell types; MAPK activation has been observed in B-Raf-expressing cells and has been attributed to Rap1 activation with subsequent B-Raf activation, whereas MAPK inhibition has been observed in cells lacking B-Raf and has been attributed to cAMP-dependent protein kinase (protein kinase A)-mediated phosphorylation and inhibition of Raf-1 kinase. We found that cAMP stimulated MAPK activity in CHO-K1 and PC12 cells but inhibited MAPK activity in C6 and NB2A cells. In all four cell types, cAMP activated Rap1, and the 95- and 68-kDa isoforms of B-Raf were expressed. cAMP activation or inhibition of MAPK correlated with activation or inhibition of endogenous and transfected B-Raf kinase. Although all cell types expressed similar amounts of 14-3-3 proteins, approximately 5-fold less 14-3-3 was associated with B-Raf in cells in which cAMP was inhibitory than in cells in which cAMP was stimulatory. We found that the cell type-specific inhibition of B-Raf could be completely prevented by overexpression of 14-3-3 isoforms, whereas expression of a dominant negative 14-3-3 mutant resulted in partial loss of B-Raf activity. Our data suggest that 14-3-3 bound to B-Raf protects the enzyme from protein kinase A-mediated inhibition; the amount of 14-3-3 associated with B-Raf may explain the tissue-specific effects of cAMP on B-Raf kinase activity.


Journal of Biological Chemistry | 2009

Type II cGMP-dependent Protein Kinase Mediates Osteoblast Mechanotransduction

Hema Rangaswami; Nisha Marathe; Shunhui Zhuang; Yongchang Chen; Jiunn-Chern Yeh; John A. Frangos; Gerry R. Boss; Renate B. Pilz

Continuous bone remodeling in response to mechanical loading is critical for skeletal integrity, and interstitial fluid flow is an important stimulus for osteoblast/osteocyte growth and differentiation. However, the biochemical signals mediating osteoblast anabolic responses to mechanical stimulation are incompletely understood. In primary human osteoblasts and murine MC3T3-E1 cells, we found that fluid shear stress induced rapid expression of c-fos, fra-1, fra-2, and fosB/ΔfosB mRNAs; these genes encode transcriptional regulators that maintain skeletal integrity. Fluid shear stress increased osteoblast nitric oxide (NO) synthesis, leading to activation of cGMP-dependent protein kinase (PKG). Pharmacological inhibition of the NO/cGMP/PKG signaling pathway blocked shear-induced expression of all four fos family genes. Induction of these genes required signaling through MEK/Erk, and Erk activation was NO/cGMP/PKG-dependent. Treating cells with a membrane-permeable cGMP analog partly mimicked the effects of fluid shear stress on Erk activity and fos family gene expression. In cells transfected with small interfering RNAs (siRNA) specific for membrane-bound PKG II, shear- and cGMP-induced Erk activation and fos family gene expression was nearly abolished and could be restored by transducing cells with a virus encoding an siRNA-resistant form of PKG II; in contrast, siRNA-mediated repression of the more abundant cytosolic PKG I isoform was without effect. Thus, we report a novel function for PKG II in osteoblast mechanotransduction, and we propose a model whereby NO/cGMP/PKG II-mediated Erk activation and induction of c-fos, fra-1, fra-2, and fosB/ΔfosB play a key role in the osteoblast anabolic response to mechanical stimulation.


Science Signaling | 2014

Nongenomic Thyroid Hormone Signaling Occurs Through a Plasma Membrane–Localized Receptor

Hema Kalyanaraman; Raphaela Schwappacher; Jisha Joshua; Shunhui Zhuang; Brian T. Scott; Matthew Klos; Darren E. Casteel; John A. Frangos; Wolfgang H. Dillmann; Gerry R. Boss; Renate B. Pilz

Signaling from a plasma membrane–associated receptor contributes to the effects of thyroid hormones on bones. Rapidly Promoting Bone Growth from the Membrane Thyroid hormones regulate many processes, including bone turnover. By entering cells and binding to nuclear receptors, thyroid hormones induce target gene expression; however, they also stimulate rapid cellular changes that are independent of gene regulation. Kalyanaraman et al. found an alternative form of the thyroid receptor that associated with the cellular plasma membrane of bone cells. Stimulation of this receptor by thyroid hormones increased the numbers of bone cells and protected them from death. Treatment of mice deficient in thyroid hormones with a compound that mimicked signaling from this membrane-associated receptor reversed defects in bone formation, suggesting that this form of thyroid hormone action may be clinically relevant. Thyroid hormone (TH) is essential for vertebrate development and the homeostasis of most adult tissues, including bone. TH stimulates target gene expression through the nuclear thyroid receptors TRα and TRβ; however, TH also has rapid, transcription-independent (nongenomic) effects. We found a previously uncharacterized plasma membrane–bound receptor that was necessary and sufficient for nongenomic TH signaling in several cell types. We determined that this receptor is generated by translation initiation from an internal methionine of TRα, which produces a transcriptionally incompetent protein that is palmitoylated and associates with caveolin-containing plasma membrane domains. TH signaling through this receptor stimulated a pro-proliferative and pro-survival program by increasing the intracellular concentrations of calcium, nitric oxide (NO), and cyclic guanosine monophosphate (cGMP), which led to the sequential activation of protein kinase G II (PKGII), the tyrosine kinase Src, and extracellular signal–regulated kinase (ERK) and Akt signaling. Hypothyroid mice exhibited a cGMP-deficient state with impaired bone formation and increased apoptosis of osteocytes, which was rescued by a direct stimulator of guanylate cyclase. Our results link nongenomic TH signaling to a previously uncharacterized membrane-bound receptor, and identify NO synthase, guanylate cyclase, and PKGII as TH effectors that activate kinase cascades to regulate cell survival and proliferation.


Science Signaling | 2010

Cyclic GMP and Protein Kinase G Control a Src-Containing Mechanosome in Osteoblasts

Hema Rangaswami; Raphaela Schwappacher; Nisha Marathe; Shunhui Zhuang; Darren E. Casteel; Bodo Haas; Yong Chen; Alexander Pfeifer; Hisashi Kato; Sanford J. Shattil; Gerry R. Boss; Renate B. Pilz

Drugs that activate protein kinase G could mimic the bone-building effects of mechanical stimulation. Building Bone The loss of bone density that afflicts individuals with osteoporosis makes them more vulnerable to bone fractures. One way to counteract decreases in bone density is through exercise, which mechanically stimulates bone tissue and initiates proliferation in bone-forming cells. Alternatively, the signaling pathways that mediate this proliferative response could be therapeutically activated to mimic the effects of mechanical stimulation. Nitric oxide (NO) is a second messenger that is produced in response to mechanical stimulation; it triggers production of cyclic GMP (cGMP) and, consequently, activation of protein kinase G (PKG). Rangaswami et al. delineated a pathway in mechanically stimulated osteoblasts whereby activation of PKGII signaling ultimately leads to a proliferative response. Mechanical stimuli triggered the formation of a complex containing PKGII, the tyrosine kinase Src, the phosphatases SHP-1 and SHP-2, and β3 integrin mechanoreceptors. Activation of Src in this complex led to activation of extracellular signal–regulated kinase (ERK), which in turn elicited changes in gene expression that promote proliferation. Thus, PKG-activating drugs could be used to mimic the anabolic effects of mechanical stimulation on bone in the treatment of osteoporosis. The accompanying Perspective by Bidwell and Pavalko describes other examples of signaling pathways that mediate mechanotransduction in bone cells. Mechanical stimulation is crucial for bone growth and remodeling, and fluid shear stress promotes anabolic responses in osteoblasts through multiple second messengers, including nitric oxide (NO). NO triggers production of cyclic guanosine 3′,5′-monophosphate (cGMP), which in turn activates protein kinase G (PKG). We found that the NO-cGMP-PKG signaling pathway activates Src in mechanically stimulated osteoblasts to initiate a proliferative response. PKGII was necessary for Src activation, a process that also required the interaction of Src with β3 integrins and dephosphorylation of Src by a complex containing the phosphatases SHP-1 (Src homology 2 domain–containing tyrosine phosphatase 1) and SHP-2. PKGII directly phosphorylated and stimulated SHP-1 activity, and fluid shear stress triggered the recruitment of PKGII, Src, SHP-1, and SHP-2 to a mechanosome containing β3 integrins. PKGII-null mice showed defective Src and ERK (extracellular signal–regulated kinase) signaling in osteoblasts and decreased ERK-dependent gene expression in bone. Our findings reveal a convergence of NO-cGMP-PKG and integrin signaling and establish a previously unknown mechanism of Src activation. These results support the use of PKG-activating drugs to mimic the anabolic effects of mechanical stimulation of bone in the treatment of osteoporosis.


Journal of Biological Chemistry | 2003

Oncogenic Ras Leads to Rho Activation by Activating the Mitogen-activated Protein Kinase Pathway and Decreasing Rho-GTPase-activating Protein Activity

Jeffrey C. Chen; Shunhui Zhuang; Tony H. Nguyen; Gerry R. Boss; Renate B. Pilz

Transformation by oncogenic Ras requires signaling through Rho family proteins including RhoA, but the mechanism(s) whereby oncogenic Ras regulates the activity of RhoA is (are) unknown. We examined the effect of Ras on RhoA activity in NIH 3T3 cells either stably transfected with H-Ras(V12) under control of an inducible promoter or transiently expressing the activated H-Ras. Using a novel method to quantitate enzymatically the GTP bound to Rho, we found that expression of the oncogenic Ras increased Rho activity ∼2-fold. Increased Rho activity was associated with increased plasma membrane binding of RhoA and decreased activity of the Rho/Ras-regulated p21WAF1/CIP1 promoter. RhoA activation by oncogenic Ras could be explained by a decrease in cytosolic p190 Rho-GAP activity and translocation of p190 Rho-GAP from the cytosol to a detergent-insoluble cytoskeletal fraction. Pharmacologic inhibition of the Ras/Raf/MEK/ERK pathway prevented Ras-induced activation of RhoA and translocation of p190 Rho-GAP; expression of constitutively active Raf-1 kinase or MEK was sufficient to induce p190 Rho-GAP translocation. We conclude that in NIH 3T3 cells oncogenic Ras activates RhoA through the Raf/MEK/ERK pathway by decreasing the cytosolic activity and changing the subcellular localization of p190 Rho-GAP.


Experimental Biology and Medicine | 2006

Cyanide Detoxification by the Cobalamin Precursor Cobinamide

Kate E. Broderick; Prasanth Potluri; Shunhui Zhuang; Immo E. Scheffler; Vijay S. Sharma; Renate B. Pilz; Gerry R. Boss

Cyanide is a highly toxic agent that inhibits mitochondrial cytochrome-c oxidase, thereby depleting cellular ATP. it contributes to smoke inhalation deaths in fires and could be used as a weapon of mass destruction. Cobalamin (vitamin B12) binds cyanide with a relatively high affinity and is used in Europe to treat smoke inhalation victims. Cobinamide, the penultimate compound in cobalamin biosynthesis, binds cyanide with about 1010 greater affinity than cobalamin, and we found It was several-fold more effective than cobalamin in (i) reversing cyanide inhibition of oxidative phosphorylation in mammalian cells; (ii) rescuing mammalian cells and Drosophila melanogaster from cyanide toxicity; and (iii) reducing cyanide inhibition of Drosophila Malpighian tubule secretion. Cobinamide could be delivered by oral ingestion, inhalation, or injection to Drosophila, and it was as effective when administered up to 5 mins post-cyanide exposure as when given preexposure. We conclude that cobinamide is an effective cyanide detoxifying agent that has potential use as a cyanide antidote, both in smoke inhalation victims and in persons exposed to cyanide used as a weapon of mass destruction.


Molecular and Cellular Biology | 2003

Synergism between Calcium and Cyclic GMP in Cyclic AMP Response Element-Dependent Transcriptional Regulation Requires Cooperation between CREB and C/EBP-β

Yongchang Chen; Shunhui Zhuang; Stijn Cassenaer; Darren E. Casteel; Tanima Gudi; Gerry R. Boss; Renate B. Pilz

ABSTRACT Calcium induces transcriptional activation of the fos promoter by activation of the cyclic AMP response element (CRE)-binding protein (CREB), and in some cells its effect is enhanced synergistically by cyclic GMP (cGMP) through an unknown mechanism. We observed calcium-cGMP synergism in neuronal and osteogenic cells which express type II cGMP-dependent protein kinase (G-kinase); the effect on the fos promoter was mediated by the CRE and proportional to G-kinase activity. Dominant negative transcription factors showed involvement of CREB- and C/EBP-related proteins but not of AP-1. Expression of C/EBP-β but not C/EBP-α or -δ enhanced the effects of calcium and cGMP on a CRE-dependent reporter gene. The transactivation potential of full-length CREB fused to the DNA-binding domain of Gal4 was increased synergistically by calcium and cGMP, and overexpression of C/EBP-β enhanced the effect, while a dominant negative C/EBP inhibited it. With a mammalian two-hybrid system, coimmunoprecipitation experiments, and in vitro binding studies, we demonstrated that C/EBP-β and CREB interacted directly; this interaction involved the C terminus of C/EBP-β but occurred independently of CREBs leucine zipper domain. CREB Ser133 phosphorylation was stimulated by calcium but not by cGMP; in cGMP-treated cells, 32PO4 incorporation into C/EBP-β was decreased and C/EBP-β/CRE complexes were increased, suggesting regulation of C/EBP-β functions by G-kinase-dependent dephosphorylation. C/EBP-β and CREB associated with the fos promoter in intact cells, and the amount of promoter-associated C/EBP-β was increased by calcium and cGMP. We conclude that calcium and cGMP transcriptional synergism requires cooperation of CREB and C/EBP-β, with calcium and cGMP modulating the phosphorylation states of CREB and C/EBP-β, respectively.


Journal of Biological Chemistry | 2012

Pro-survival Effects of 17β-Estradiol on Osteocytes Are Mediated by Nitric Oxide/cGMP via Differential Actions of cGMP-dependent Protein Kinases I and II

Nisha Marathe; Hema Rangaswami; Shunhui Zhuang; Gerry R. Boss; Renate B. Pilz

Background: Estrogens prevent bone loss in part by preventing osteocyte apoptosis. Results: Anti-apoptotic effects of 17β-estradiol in osteocytes require NO/cGMP-mediated stimulation of Akt and Akt- and cGMP-dependent protein kinase (PKG)-dependent phosphorylation of BAD. Conclusion: PKG types I and II serve independent anti-apoptotic functions in 17β-estradiol-treated osteocytes, converging on BAD. Significance: These novel mechanisms of 17β-estradiol-mediated bone protection provide a rationale for developing NO/cGMP-based therapies for osteoporosis. Estrogens promote bone health in part by increasing osteocyte survival, an effect that requires activation of the protein kinases Akt and ERK1/2, but the molecular mechanisms involved are only partly understood. Because estrogens increase nitric oxide (NO) synthesis and NO can have anti-apoptotic effects, we examined the role of NO/cGMP signaling in estrogen regulation of osteocyte survival. Etoposide-induced death of MLO-Y4 osteocyte-like cells, assessed by trypan blue staining, caspase-3 cleavage, and TUNEL assays, was completely prevented when cells were pre-treated with 17β-estradiol. This protective effect was mimicked when cells were pre-treated with a membrane-permeable cGMP analog and blocked by pharmacological inhibitors of NO synthase, soluble guanylate cyclase, or cGMP-dependent protein kinases (PKGs), supporting a requirement for NO/cGMP/PKG signaling downstream of 17β-estradiol. siRNA-mediated knockdown and viral reconstitution of individual PKG isoforms demonstrated that the anti-apoptotic effects of estradiol and cGMP were mediated by PKG Iα and PKG II. Akt and ERK1/2 activation by 17β-estradiol required PKG II, and cGMP mimicked the effects of estradiol on Akt and ERK, including induction of ERK nuclear translocation. cGMP induced BAD phosphorylation on several sites, and experiments with phosphorylation-deficient BAD mutants demonstrated that the anti-apoptotic effects of cGMP and 17β-estradiol required BAD phosphorylation on Ser136 and Ser155; these sites were targeted by Akt and PKG I, respectively, and regulate BAD interaction with Bcl-2. In conclusion, 17β-estradiol protects osteocytes against apoptosis by activating the NO/cGMP/PKG cascade; PKG II is required for estradiol-induced activation of ERK and Akt, and PKG Iα contributes to pro-survival signaling by directly phosphorylating BAD.

Collaboration


Dive into the Shunhui Zhuang's collaboration.

Top Co-Authors

Avatar

Renate B. Pilz

University of California

View shared research outputs
Top Co-Authors

Avatar

Gerry R. Boss

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tong Zhang

University of California

View shared research outputs
Top Co-Authors

Avatar

Yongchang Chen

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nisha Marathe

University of California

View shared research outputs
Top Co-Authors

Avatar

Jisha Joshua

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge